A Unit 07: Speed, Power, Torque & DC Motors

Content Area:	Science
Course(s):	Robotics A
Time Period:	Marking Period
Length:	3
Status:	Published

1

Standards

SCI.9-12.HS-ETS1-1	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
SCI.9-12.HS-ETS1-3	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
SCI.9-12.HS-ETS1-2	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
SCI.9-12.HS-PS2-2	Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.

Enduring Understandings

- The engineering process we use in the real world for solving problems will often combine the application of both practical and scientific information.
- Comprehension of STEAM concepts will be required in the engineering process when attempting to predict the outcome of an applied design.

Essential Questions

- 1. Why would you want to increase your speed and lower your power?
- 2. Why would you want to increase your power and lower your speed?
- 3. How does the change in the load affect your current draw?

Resources

- Unit Guide
- Paper
- Pencils with erasers
- Rulers
- Internet Access
- Dictionaries

- VEX Robotics Kit
- Computers with Autodesk Inventor
- Storage containers
- Online Resources
- Engineering Notebooks
- Protractor
- Compass