
Unit 7: Parameters, Return, and Libraries
Content Area: Mathematics
Course(s): Generic Course, AP Comp Sci A
Time Period: Semester 2
Length: 3 weeks
Status: Published

Standards

CS.9-12.8.1.12.AP.1 Design algorithms to solve computational problems using a combination of original and 
existing algorithms. 

CS.9-12.8.1.12.AP.2 Create generalized computational solutions using collections instead of repeatedly using 
simple variables. 

CS.9-12.8.1.12.AP.3 Select and combine control structures for a specific application based upon performance 
and readability, and identify trade-offs to justify the choice. 

CS.9-12.8.1.12.AP.4 Design and iteratively develop computational artifacts for practical intent, personal 
expression, or to address a societal issue. 

CS.9-12.8.1.12.AP.5 Decompose problems into smaller components through systematic analysis, using 
constructs such as procedures, modules, and/or objects. 

CS.9-12.8.1.12.AP.6 Create artifacts by using procedures within a program, combinations of data and 
procedures, or independent but interrelated programs. 

CS.9-12.8.1.12.AP.7 Collaboratively design and develop programs and artifacts for broad audiences by 
incorporating feedback from users. 

CS.9-12.8.1.12.AP.8 Evaluate and refine computational artifacts to make them more usable and accessible. 

CS.9-12.8.1.12.AP.9 Collaboratively document and present design decisions in the development of complex 
programs. 

CS.9-12.AP Algorithms & Programming 

Individuals evaluate and select algorithms based on performance, reusability, and ease of 
implementation. 

Complex programs are developed, tested, and analyzed by teams drawing on the 
members’ diverse strengths using a variety of resources, libraries, and tools. 

Trade-offs related to implementation, readability, and program performance are 
considered when selecting and combining control structures. 

Programmers choose data structures to manage program complexity based on 
functionality, storage, and performance trade-offs. 

Essential Questions
• How can calling procedures make our programs more effecient?
• Why do we develop procedures?
• How can we use the libraries of any programming language we learn to our benefit?

Enduring Understanding
• Developers create and innovate using an iterative design process that is user-focused, that incorporates 



implementation/feedback cycles, and that leaves ample room for experimentation and risk-taking.
• The way statements are sequenced and combined in a program determines the computed result. 

Programs incorporate iteration and selection constructs to represent repetition and make decisions to 
handle varied input values.

• Programmers break down problems into smaller and more manageable pieces. By creating procedures 
and leveraging parameters, programmers generalize processes that can be reused. Procedures allow 
programmers to draw upon existing code that has already been tested, allowing them to write programs 
more quickly and with more confidence.

Knowledge and Skills
Students learn how to design clean and reusable code that can be shared with a single classmate or the entire 
world. In the beginning of the unit, students are introduced to the concepts of parameters and return, which 
allow for students to design functions that implement an algorithm. In the second half of the unit, students 
learn how to design libraries of functions that can be packaged up and shared with others. The unit concludes 
with students designing their own small library of functions that can be used by a classmate.

Transfer Goals
Procedures exist in all high-level programming languages.

Procedures are an important part of abstraction.

Procedures break down big ideas into small parts.

Resources
1. Various YouTube videos that visually explain concepts and ideas.

2. Various widgets found on code.org.

3. Test banks created on Edulastic and code.org

4. Use of Google Classroom, Google Slides, Google Docs and Google Sheets


