*Math Unit 3 - Problem Solving \& Data Analysis

Content Area: Course(s): Time Period: Length: Status:

Mathematics
ACT/SAT Prep
November
5 Blocks
Published

Enduring Understandings

Mathematical models can be used to describe physical relationships; these are often non-linear.

Analyzing the reasonableness of your answer allows you to gain a better understanding of the material.

It is important to determine an appropriate representation for data.

There exists a distinct difference between correlation and causation.

A function that models a real-world situation can then be used to make estimates or predictions about future occurrences.

Essential Questions

Mathematically speaking, how does what you learned today connect to what you learned yesterday and what you will learn tomorrow?

How are functions and their graphs related?

How do we make predictions and informed decisions based on numerical information?

What advantages and disadvantages come from use technology to analyze data?

Content

Vocabulary

- units
- percents
- ratios
- rates
- proportions
- table data
- mean
- median
- mode
- standard deviation
- shape
- center
- spread
- scatter plot
- correlation

Skills

Apply proportional relationships, ratios, rates, and units in a wide variety of contexts

Understand and use the relationship between percent change and growth factor

For quantitative variables, calculate, compare, and interpret mean, median, and range. Interpret (but don't calculate) standard deviation.

Represent data on two quantitative variables on a scatter plot and describe how the variables are related.

Summarize categorical data for two categories in two-way frequency tables.

Estimate the line of best fit for a given scatterplot; use the line to make predictions

Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).

SAT Emphasized Skills

- Creating and analyzing relationships using ratios, proportions, percentages, and units.
- Describing relationships shown graphically
- Summarizing qualitative and quantitative data

Resources

https://www.khanacademy.org/test-prep/sat/sat-math-practice\#new-sat-problem-solving-data-analysis

Standards

Interpreting Categorical and Quantitative Data S-ID

A. Summarize, represent, and interpret data on a single count or measurement variable

1. Represent data with plots on the real number line (dot plots, histograms, and box plots).
2. Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.
3. Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).
4. Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.

B. Summarize, represent, and interpret data on two categorical and quantitative variables

5. Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.
6. Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
c. Fit a linear function for a scatter plot that suggests a linear association.

C. Interpret linear models

9. Distinguish between correlation and causation.

1 Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

2 Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

5 Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

6 Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

7 Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see 5 -$3(x-y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.
\(\left.$$
\begin{array}{ll}\text { MA.S-ID.A. } 1 & \begin{array}{l}\text { Represent data with plots on the real number line (dot plots, histograms, and box plots). } \\
\text { MA.S-ID.A. } 2\end{array}
$$

Use statistics appropriate to the shape of the data distribution to compare center

(median, mean) and spread (interquartile range, standard deviation) of two or more

different data sets.\end{array}\right\}\)| Interpret differences in shape, center, and spread in the context of the data sets, |
| :--- |
| accounting for possible effects of extreme data points (outliers). |
| MA.S-ID.A. 3 |
| Use the mean and standard deviation of a data set to fit it to a normal distribution and to |
| estimate population percentages. Recognize that there are data sets for which such a |
| procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas |
| under the normal curve. |

