*Unit 2 Functions and Graphs

Content Area:	Mathematics
Course(s):	Pre-Calculus
Time Period:	October
Length:	10 - 12 blocks
Status:	Published

Transfer Skills

Creating a graph is not the same as interpreting the information displayed. Graphs and equations are alternative ways of displaying relationships between real life situations.

Enduring Understandings

Graphs and equations are alternative ways for depicting and analyzing patterns of non-linear change.

Mathematical models can be used to describe physical relationships; these are often non-linear.

Creating a graph is not the same as interpreting the information displayed.

A variety of families of functions and methods can be used to model and solve real world situations.

Essential Questions

How are functions and their graphs related?

How can technology be used to investigate properties of functions and their graphs?

What information can be used from an equation to sketch a function?

How can a function be manipulated and how does it affect the its graph?

Content

Vocabulary

Parent functions, key characteristics, piecewise, transformation, domain, range, relative extrema

Skills

Determine the domain, range, and zeros of a function, and graph a function.

Determine the average rate of change of a function.

Identify intervals of increasing/decreasing.

Locate relative extrema given a graph and using the graphing calculator.

Identify even and odd functions graphically and algebraically.

Identify and graph key parent functions, including piece-wise and step functions.

Graph transformations of parent functions including translations, reflections, horizontal and vertical stretches/compressions.

Perform operations on functions and determine the domains of the resulting functions

Graph and write equations of piecewise functions.

Resources

Pearson Pre-Calculus Textbook Content Vocabulary Practices quizzes Teacher website www.KhanAcademy.org, www.Desmos.com, www.kutasoftware site www.njctl.org/courses/math/precalculus www.illustrativemathematics.org

Standards

Interpreting Functions

F-IF

A. Understand the concept of a function and use function notation

1. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If *f* is a function and *x* is an element of its domain, then f(x) denotes the output of *f* corresponding to the input *x*. The graph of *f* is the graph of the equation y = f(x).

2. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

B. Interpret functions that arise in applications in terms of the context

4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. *Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.*★

5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.

6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.★

C. Analyze functions using different representations

7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.*

a. Graph linear and quadratic functions and show intercepts, maxima, and minima.

b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.

c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.

d. (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available,

and showing end behavior.

e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.

a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). *For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.*

Building Functions

A. Build a function that models a relationship between two quantities

1. Write a function that describes a relationship between two quantities.*

b. Combine standard function types using arithmetic operations. *For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.*

c. (+) Compose functions. For example, if T(y) is the temperature in the atmosphere as a function of height, and h(t) is the height of a weather balloon as a function of time, then T(h(t)) is the temperature at the location of the weather balloon as a function of time.

B. Build new functions from existing functions

3. Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. *Include recognizing even and odd functions from their graphs and algebraic expressions for them.*

4. Find inverse functions.

a. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x) = 2x^3$ or f(x) = (x+1)/(x-1) for $x \neq 1$.

b. (+) Verify by composition that one function is the inverse of another.

c. (+) Read values of an inverse function from a graph or a table, given that the function has an inverse.

d. (+) Produce an invertible function from a non-invertible function by restricting the domain.

Standards for mathematical practices

F-BF

1 Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

2 Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize—to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents—and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

3 Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account

the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

4 Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a

design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

5 Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

6 Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

7 Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well remembered $7 \times 5 + 7 \times 3$, in preparation for learning about the distributive property. In the expression x2 + 9x + 14, older students can see the 14 as 2×7 and the 9 as 2 + 7. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see 5 - 3(x - y) 2 as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

8 Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation (y - 2)/(x - 1) = 3. Noticing the regularity in the way terms cancel when expanding (x - 1)(x + 1), (x - 1)(x2 + x + 1), and (x - 1)(x3 + x2 + x + 1) might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

MA.K-12.1	Make sense of problems and persevere in solving them.
MA.F-IF	Interpreting Functions
MA.F-IF.A	Understand the concept of a function and use function notation
	Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.
MA.F-IF.A.1	Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x . The graph of f is the graph of the equation $y = f(x)$.
MA.K-12.2	Reason abstractly and quantitatively.
	Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize—to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents—and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.
MA.F-IF.A.2	Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
MA.K-12.3	Construct viable arguments and critique the reasoning of others.

	Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.
MA.F-IF.B	Interpret functions that arise in applications in terms of the context
MA.K-12.4	Model with mathematics.
	Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.
MA.F-IF.B.4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.
MA.K-12.5	Use appropriate tools strategically.
	Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.
MA.F-IF.B.5	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
MA.K-12.6	Attend to precision.
	Mathematically proficient students try to communicate precisely to others. They try to use

	clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.
MA.F-IF.B.6	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
MA.K-12.7	Look for and make use of structure.
MA.F-IF.C	Analyze functions using different representations
MA.F-IF.C.7	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
	Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7 × 8 equals the well remembered 7 × 5 + 7 × 3, in preparation for learning about the distributive property. In the expression $x^2 + 9x + 14$, older students can see the 14 as 2 × 7 and the 9 as 2 + 7. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5 - 3(x - y)^2$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y .
MA.K-12.8	Look for and express regularity in repeated reasoning.
MA.F-IF.C.7a	Graph linear and quadratic functions and show intercepts, maxima, and minima.
MA.F-IF.C.7b	Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
	Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1, 2)$ with slope 3, middle school students might abstract the equation $(y - 2)/(x - 1) = 3$. Noticing the regularity in the way terms cancel when expanding $(x - 1)(x + 1)$, $(x - 1)(x^2 + x + 1)$, and $(x - 1)(x^3 + x^2 + x + 1)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.
MA.F-IF.C.7c	Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
MA.F-IF.C.7d	Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.
MA.F-IF.C.7e	Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
MA.F-IF.C.8	Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
MA.F-IF.C.8a	Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a

	context.
MA.F-IF.C.8b	Use the properties of exponents to interpret expressions for exponential functions.
MA.F-IF.C.9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
	For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
MA.F-BF	Building Functions
MA.F-BF.A	Build a function that models a relationship between two quantities
MA.F-BF.A.1	Write a function that describes a relationship between two quantities.
MA.F-BF.A.1c	Compose functions.
MA.F-BF.B	Build new functions from existing functions
MA.F-BF.B.3	Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $kf(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.
MA.F-BF.B.4	Find inverse functions.
MA.F-BF.B.4a	Solve an equation of the form $f(x) = c$ for a simple function f that has an inverse and write an expression for the inverse.
	For example, $f(x) = 2x^3$ or $f(x) = (x + 1)/(x - 1)$ for $x \neq 1$.
MA.F-BF.B.4b	Verify by composition that one function is the inverse of another.
MA.F-BF.B.4c	Read values of an inverse function from a graph or a table, given that the function has an inverse.
MA.F-BF.B.4d	Produce an invertible function from a non-invertible function by restricting the domain.
MA.F-BF.B.5	Use the inverse relationship between exponents and logarithms to solve problems involving logarithms and exponents.