*Unit 5 Radicals

Content Area: Mathematics Course(s): Algebra 1 CP Time Period: January Length: Status:

Transfer Skills

In this unit the students will extend the properties of exponents to include rational exponents. Students will perform perations of expressions with radicals.

Instructional Notes: Teacher should pre-assess students knowledge of properties of exponents.

Enduring Understandings

A single quantity may be represented by many equivalent but different expressions.

A rational expression is a form of a fraction.

Essential Questions

How do radicals and rational exponents relate?

Content

Vocabulary
exponent
rational exponent
irrational number
rational number
radicals

Skills

Identify the parts of a radical.
Add, subtract, multiply radical expressions.
Rationalize denominators.
Solving radical expressions.
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational

Resources

Quizlet.com : Flashcard practice for Academic Vocabulary

NJSLS - New Jersey Student Learning Standards

Teacher Resources by Standard

https://www.illustrativemathematics.org/

https://nj.pbslearningmedia.org/

Online Teaching Websites

Khan Academy
MATH IXL

Standards

NJSLS 2016

Seeing Structure in Expressions

A-SSE A. Interpret the structure of expressions

1. Interpret expressions that represent a quantity in terms of its context. \star
a. Interpret parts of an expression, such as terms, factors, and coefficients.
b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $\mathrm{P}(1+\mathrm{r})^{\wedge} \mathrm{n}$ as the product of P and a factor not depending on P
2. Use the structure of an expression to identify ways to rewrite it. For example, see $x^{\wedge} 4-y^{\wedge} 4$ as $\left(x^{\wedge} 2\right)^{\wedge} 2-$ $\left(y^{\wedge} 2\right)^{\wedge} 2$, thus recognizing it as a difference of squares that can be factored as $\left(x^{\wedge} 2-y^{\wedge} 2\right)\left(x^{\wedge} 2+y^{\wedge} 2\right)$.

The Real Number System

N-RN A. Extend the properties of exponents to rational exponents.

1. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $51 / 3$ to be the cube root of 5 because we want $\left(5^{\wedge} 1 / 3\right)^{\wedge} 3=5^{\wedge}(1 / 3)^{\wedge} 3$ to hold, so $\left(5^{\wedge} 1 / 3\right)^{\wedge} 3$ must equal 5.
2. Rewrite expressions involving radicals and rational exponents using the properties of exponents.

B. Use properties of rational and irrational numbers.

3. Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

Mathematics | Standards for Mathematical Practice

1 Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

2 Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing
symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

4 Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

5 Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

6 Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

7 Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x 2$ $+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see 5 -$3(\mathrm{x}-\mathrm{y}) 2$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

8 Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)(x 2+x+1)$, and $(x-1)(x 3+x 2+x+1)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

MA.F-BF.A.1b
MA.F-IF.B. 4

MA.F-IF.B. 5

MA.F-LE.A
MA.F-LE.A. 1

MA.F-LE.A.1b

MA.F-LE.A.1c

MA.F-LE.B. 5
MA.K-12.1
MA.K-12.2

Combine standard function types using arithmetic operations.
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.

Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.

Construct and compare linear and exponential models and solve problems
Distinguish between situations that can be modeled with linear functions and with exponential functions.

Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

Interpret the parameters in a linear or exponential function in terms of a context.
Make sense of problems and persevere in solving them.
Reason abstractly and quantitatively.

MA.K-12.5
MA.K-12.6
MA.K-12.7
MA.K-12.8
MA.N-RN.A
MA.N-RN.A. 1

MA.N-RN.A. 2

MA.N-RN.B
MA.N-RN.B. 3

MA.A-CED.A
MA.A-CED.A. 1
MA.A-CED.A. 2

MA.A-REI.D
MA.A-SSE
MA.A-SSE.A
MA.A-SSE.A. 1
MA.A-SSE.A.1a
MA.A-SSE.A.1b
MA.A-SSE.B
MA.A-SSE.B. 3

Use appropriate tools strategically.
Attend to precision.
Look for and make use of structure.
Look for and express regularity in repeated reasoning.
Extend the properties of exponents to rational exponents.
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.

Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Use properties of rational and irrational numbers.
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

Create equations that describe numbers or relationships
Create equations and inequalities in one variable and use them to solve problems.
Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

Represent and solve equations and inequalities graphically
Seeing Structure in Expressions
Interpret the structure of expressions
Interpret expressions that represent a quantity in terms of its context.
Interpret parts of an expression, such as terms, factors, and coefficients.
Interpret complicated expressions by viewing one or more of their parts as a single entity.
Write expressions in equivalent forms to solve problems
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

