
2- Algorithms and Programming
Content Area: Technology
Course(s):
Time Period: Marking Period 1
Length: 17 blocks
Status: Published

Course Description & Instructional Notes
Course Description

Exam Weighting: 30-35%

All programming languages, whether block-based or text-based, use similar programming structures and
commands. Having a basic understanding of how these building blocks are combined to form algorithms and
abstractions in one language makes it easier to apply these same understandings to other programming
languages. This big idea focuses on determining the efficiency of algorithms, as well as writing and
implementing algorithms in a program. This big idea can be paired with any of the other big ideas and taught
throughout the school year.

Prior Knowledge
none

Instructional Notes

Building Computational Thinking Practices:
Some problems are so simple that writing a program would be more time-consuming than accomplishing the
task by hand, while others are so complicated that it would take a computer an unreasonable amount of time to
solve, if it even is possible. It is important for students to understand that not all problems can or should be
solved using a program. In procedural abstraction, programmers group program code into a procedure to make
the code more readable and reusable. This type of abstraction often means using parameters to make the
procedure more general and allow it to be called multiple times with varying inputs. One way to help students
create abstractions is to have them write multiple versions of a procedure that each accomplish a specific
instance of a task. After identifying the commonalities, students may find it easier to write a more abstract,
general procedure that uses parameters to accommodate the differences. In data abstraction, programmers use
a list as a representation of something else, such as a grocery list or seating chart. When students explain how
their abstractions manage complexity, they should use the context of their specific program to support why the
abstraction is necessary or helpful, rather than writing in general about how abstraction manages program
complexity. One way to do this is to consider how the program would be written differently, or if it could be
written at all, without the use of the abstraction.

Preparing for the AP Exam:
On the AP Exam, students will be asked to determine the result or functionality of code. Students can practice
analyzing code segments by first predicting the result of provided code and then checking their hypothesis by
running the program on a computer. Because the Create performance task requires students to create their own
program, they will need scaffolded practice that moves them from representing algorithmic processes through
diagrams or pseudocode, to writing simple programs that perform calculations, to more complex programs that
leverage abstraction. While students can collaborate on the development of the program, each student should
be a contributing member of the program development. When completing the written responses, which must
be completed independently, an in-depth understanding of how the code segments function will allow each

student to answer the prompts on their own.

Technology Integration
Computer Science naturally integrates technology on a daily basis.

Enduring Understandings
To find specific solutions to generalizable problems, programmers represent and organize data in multiple
ways.

The way statements are sequenced and combined in a program determines the computed result. Programs
incorporate iteration and selection constructs to represent repetition and make decisions to handle varied input
values.

Programmers break down problems into smaller and more manageable pieces.By creating procedures and
leveraging parameters, programmers generalize processes that can be reused. Procedures allow programmers
to draw upon existing code that has already been tested, allowing them to write programs more quickly and
with more confidence.

There exist problems that computers cannot solve, and even when a computer can solve a problem, it may not
be able to do so in a reasonable amount of time.

Essential Questions
How can we store data in a program to solve problems?

What might happen if you completed the steps in your regular morning routine to get ready and go to school in
a different order? How might the reordering affect the decisions you make each morning?

How do video games group the different actions for a player based on what key is pressed on the keyboard or
controller? How do apps group different actions together based on user interaction, such as pressing
buttons?What types of problems can be solved more easily with a computer, and what types can be solved
more easily without a computer? Why?

Student Learning Objectives

Students will be able to…

• Represent a value with a variable.
• Determine the value of a variable as a result of an assignment.
• Represent a list or string using a variable.
• For data abstraction: Develop data abstraction using lists to store multiple elements and explain how

the use of data abstraction manages complexity in program code.
• Express an algorithm that uses sequencing without using a programming language.
• Represent a step-by-step algorithmic process using sequential code statements.
• Evaluate expressions that use arithmetic operators.
• Evaluate expressions that manipulate strings.
• For relationships between two variables, expressions, or values: Write expressions using relational

operators and evaluate expressions that use relational operators.
• For relationships between Boolean values: Write expressions using logical operators and evaluate

expressions that use logic operators.
• Express an algorithm that uses selection without using a programming language.
• For selection: Write conditional statements and determine the result of conditional statements.
• For nested selection: Write nested conditional statements and determine the result of nested conditional

statements.
• Express an algorithm that uses iteration without using a programming language.
• For iteration: Write iteration statements and determine the result or side effect of iteration statements.
• Compare multiple algorithms to determine if they yield the same side effect or result.
• For algorithms: Create algorithms and combine and modify existing algorithms.
• For list operations: Write expressions that use list indexing and list procedures and evaluate

expressions that use list indexing and list procedures.
• For algorithms involving elements of a list: Write iteration statements to traverse a list and determine

the result of an algorithm that includes list traversals.
• For binary search algorithms: Determine the number of iterations required to find a value in a data set

and explain the requirements necessary to complete a binary search.
• For procedure calls: Write statements to call procedures and determine the result or effect of a

procedure call.
• Explain how the use of procedural abstraction manages complexity in a program.
• Develop procedural abstractions to manage complexity in a program by writing procedures.
• Select appropriate libraries or existing code segments to use in creating new programs.
• For generating random values: Write expressions to generate possible values and evaluate expressions

to determine the possible results.
• For simulations: Explain how computers can be used to represent real-world phenomena or outcomes

and compare simulations with real-world contexts.
• For determining the efficiency of an algorithm: Explain the difference between algorithms that run in

reasonable time and those that do not and identify situations where a heuristic solution may be more
appropriate.

• Explain the existence of undecidable problems in computer science.

Vocabulary & Learning Experiences

Essential Academic Vocabulary: list, element, index, string, array, algorithm, sequencing, code statement,
expression, modulus, string concatenation, substring, boolean, nested conditional, iteration, traversing

Planned Learning Experiences

Predict and compare

Provide students with a list of expressions with assignments. Ask them to predict the value of each variable
after the assignment and then compare their answers to the output produced when these statements are put into
a program.

Using manipulatives

When learning about conditionals, take a printout of a simple conditional statement and cut it into multiple
sections. As students enter the classroom, hand them an envelope full of the paper strips, and ask them to
reassemble the conditional in the proper order.

Marking the text

Provide students with program code that draws a square of side length 10 and a separate set of program code
that uses side length 100. Ask students to mark up the sets of code to identify where they are different and to
create a generalization by using parameters. Ask them to write a procedure that uses parameters to draw a
square of any size.

Think-pair-share

Have students work in pairs to consider what factors would be the most important to prioritize in writing an
algorithm to build the perfect master schedule for the school. Some considerations may include maximum
class size, student preferences, and teacher availability. Have the pairs discuss and then report their results.
Finally, discuss as a class how such programs may have to settle for a “good enough” solution when an exact
solution may not be possible in a reasonable amount of time.

Resources
CodeHS
Code.org
MobileCSP

Google Classroom
AP Classroom

Assessments
Formative

Quizzes embedded in CodeHS Modules and Code Review

Better Password Prompt

Students write a program that uses a while loop to prompt a user for a password. They keep prompting the user
for the password, and if they get it correct, they then break out of the loop. If they don't get it correct, they
should give the user an error message. This activity requires that students use multiple program statements in a
specific order to solve a problem.

Summative

Algorithms and Programming Unit Assessment on CodeHS

Practice PT: Tell a Story!

In this activity, students write a JavaScript program that tells a graphical story in at least 4 scenes. Following
the milestones and the pseudocode plan that students have laid out prior to this exercise, students write the
code for their final project. They iterate and test their code along the way to make sure they have solved each
milestone.

Students then reflect upon and answer the following questions:

1. Identify the programming language and purpose of your program.

2. Describe the incremental and iterative development process of your program. How did you divide the
program into smaller tasks and make a plan to complete them all?

3. Describe the difficulties and/or opportunities you encountered and how they were resolved or incorporated.

4. Identify an algorithm that is fundamental for your program to achieve its intended purpose and includes two
or more additional algorithms.

5. Describe how each algorithm within your selected algorithm functions independently, as well as in
combination with others, to form a new algorithm that helps to achieve the intended

purpose of the program.

6. Identify an abstraction you developed, and explain how your abstraction helped manage the complexity of
your program.

NJSLS Standards
NJSLS Standards Copied and Pasted as well as linked.

NJSLS Computer Science and Design Thinking

8.2.12.ED.1: Use research to design and create a product or system that addresses a problem and make
modifications based on input from potential consumers.
8.2.12.ED.4: Design a product or system that addresses a global problem and document decisions made based
on research, constraints, trade-offs, and aesthetic and ethical considerations and share this information with an
appropriate audience.
8.2.12.NT.1: Explain how different groups can contribute to the overall design of a product.
8.2.12.NT.2: Redesign an existing product to improve form or function.

Additional NJSLS Standards
NJSLS Standards Copied and Pasted as well as linked.

Interdisciplinary Connections

NJSLS Career Readiness, Life Literacies, and Key Skills

9.4.12.CI.1: Demonstrate the ability to reflect, analyze, and use creative skills and ideas
9.4.12.CT.1: Identify problem-solving strategies used in the development of an innovative product or practice

NJSLS Companion Standards Grades 9-12 (Reading & Writing in Science & Technical Subjects)

https://www.nj.gov/education/cccs/2020/2020%20NJSLS-CSDT.pdf
https://www.nj.gov/education/cccs/2020/2020%20NJSLS-CLKS.pdf
https://www.state.nj.us/education/cccs/2016/ela/

Modifications/Accommodations

GENERAL CONSIDERATIONS FOR DIVERSE LEARNERS
English Language
Learners Students Receiving Special Education Services Advanced Learners

- Use of high level
academic
vocabulary/texts

- Problem-based
learning

- Pre assess to condense
curriculum

- Interest-based research

- Authentic problem-
solving

- Homogeneous
grouping opportunities

Knowledge and Skill
Standards in Gifted
Education for All
Teachers

Pre-K-Grade 12 Gifted
Programming Standards

Gifted Programming
Glossary of Terms

Students with 504 Plan

- Personal glossary

- Text-to-speech

- Extended time

- Simplified / verbal
instructions

- Frequent breaks

WIDA Can Do
Descriptors for Grade 9-
12

WIDA Essential Actions
Handbook

FABRIC Paradigm

Wall Township ESL
Grading Protocol

*Use WIDA Can Do
Descriptors in
coordination with
Student Language
Portraits (SLPs).

- Small group/One to one

- Additional time

- Review of directions

- Student restates information

- Space for movement or breaks

- Extra visual and verbal cues and prompts

- Preferential seating

- Follow a routine/schedule

- Rest breaks

- Verbal and visual cues regarding directions and staying
on task

- Checklists

- Immediate feedback

Students receiving Special Education programming have
specific goals and objectives, as well as accommodations
and modifications outlined within their Individualized
Education Plans (IEP) due to an identified disability
and/or diagnosis. In addition to exposure to the general
education curriculum, instruction is differentiated based
upon the student's needs. The IEP acts as a supplemental
curriculum guide inclusive of instructional strategies that
support each learner.

Considerations for Special Education Students 6-12

Teachers are responsible
for implementing
designated services and
strategies identified on a
student’s 504 Plan.

http://www.nagc.org/resources-publications/resources/national-standards-gifted-and-talented-education/knowledge-and
http://www.nagc.org/resources-publications/resources/national-standards-gifted-and-talented-education/knowledge-and
http://www.nagc.org/resources-publications/resources/national-standards-gifted-and-talented-education/knowledge-and
http://www.nagc.org/resources-publications/resources/national-standards-gifted-and-talented-education/knowledge-and
https://drive.google.com/file/d/1kyzci6RjKrwn7Yo-g2su1DS0l8-rOeK4/view?usp=sharing
https://drive.google.com/file/d/1kyzci6RjKrwn7Yo-g2su1DS0l8-rOeK4/view?usp=sharing
https://drive.google.com/file/d/13bnynRPFgKtxapLCyu8f7y_hIIf9HQvU/view?usp=sharing
https://drive.google.com/file/d/13bnynRPFgKtxapLCyu8f7y_hIIf9HQvU/view?usp=sharing
https://wida.wisc.edu/sites/default/files/resource/CanDo-KeyUses-Gr-9-12.pdf
https://wida.wisc.edu/sites/default/files/resource/CanDo-KeyUses-Gr-9-12.pdf
https://wida.wisc.edu/sites/default/files/resource/CanDo-KeyUses-Gr-9-12.pdf
https://drive.google.com/file/d/1MOkRH7aeYmJ3FwxKsT9bcQJXGfTWkidY/view?usp=sharing
https://drive.google.com/file/d/1MOkRH7aeYmJ3FwxKsT9bcQJXGfTWkidY/view?usp=sharing
https://drive.google.com/file/d/1R7mxpIl_nttbJf6leydxHWloMs2ykocb/view?usp=sharing
https://drive.google.com/file/d/1P7F_7Iq9knrCdTXo77tEpoGfVOtH-mPW/view?usp=sharing
https://drive.google.com/file/d/1P7F_7Iq9knrCdTXo77tEpoGfVOtH-mPW/view?usp=sharing
https://drive.google.com/open?id=1u5n7IpwDvpc4bltKY0TzWCAVjaeFCeU5

National Center on Universal Design for Learning -
About UDL

UDL Checklist

UDL Key Terms

At Risk Learners / Differentiation Strategies

Alternative Assessments

Choice Boards

Games and Tournaments

Group Investigations

Learning Contracts

Leveled Rubrics

Literature Circles

Multiple Texts

Personal Agendas

Homogeneous Grouping

Independent Research & Projects

Multiple Intelligence Options

Project-Based Learning

Varied Supplemental Activities

Varied Journal Prompts

Tiered Activities/Assignments

Tiered Products

Graphic Organizers

Choice of Activities

Mini-Workshops to Reteach or Extend

Think-Pair-Share by readiness or interest

Use of Collaboration of Various Activities

Jigsaw

Think-Tac-Toe

Cubing Activities

Exploration by Interest

Flexible Grouping

Goal-Setting with
Students

Homework Options

Open-Ended Activities

Varied Product Choices

Stations/Centers

Work Alone/Together

http://www.udlcenter.org/aboutudl
http://www.udlcenter.org/aboutudl
https://drive.google.com/open?id=12ND_gk5do8Cm5udNNsWpC6sHPKlaruqh
https://drive.google.com/open?id=1GpRJu1U4CGCoBIjF2XlVjlmVnqWYU3P1

