Unit 4 Applications of Derivatives Part I

Content Area:	Mathematics
Course(s):	AP Calculus AB
Time Period:	October
Length:	Approximately 10 blocks
Status:	Published

Transfer Skills

Students will be able to differentiate functions implicitly. Along with this, students will gain a deeper understanding as to how derivatives can be use to describe the behavior of a function.

Enduring Understandings

The derivative has both theoretical and real life applications.

The derivative provides useful information about the behavior of functions and the shapes of graphs.

Understanding the rate of change of a function allows you to predict future behavior.

Essential Questions

What does a derivative tell us about a function?

How can the derivative be used to solve optimization problems?

How do rates of change relate in real-life settings?

Content

Vocabulary:

Implicit differentiation, related rates, concavity, point of inflection, second derivative test

Red Hot Topics:

- * Finding the zeros of functions.
- * Evaluating functions
- * Solving equations

Skills

Differentiate equations that are implicitly defined.

Solve related rate problems.

Use the first and second derivative of a function to analytically determine intervals of increasing/decreasing, concave up/down, coordinates of relative extrema, and coordinates of points of inflection.

Understand the graphical	and numerical	connections l	between the	graphs	of $F(x)$, F	7 '(x), a	nd F "(x).
--------------------------	---------------	---------------	-------------	--------	---------------	-----------	------------

Resources

Single Variable Calculus with Vector Functions by James Stewart Chapters 3-4

AP Calculus AB AP Central at collegeboard.com

Khan Academy: www.khanacademy.org

Standards

Mathematical Practice For AP Calculus 1: Reasoning with Definitions and Threorems

- Use definitions and theorems to build arguments,
- Justify conclusions or answers, and prove results;
- Confirm that hypotheses have been satisfied in order to apply the conclusion of a theorem;
- Apply definitions and theorems in the process of solving a problem; interpret quantifiers in definitions and theorems;
- Develop conjectures based on exploration with technology;
- Produce examples and counterexamples to clarify understanding of definitions, to investigate whether converses of theorems are true or false, or to test conjectures.

Mathematical Practice For AP Calculus 2: Connecting Concepts

- Relate the concept of a limit to all aspects of calculus;
- Use the connection between concepts (e.g., rate of change and accumulation) or processes (e.g., differentiation and its inverse process antidifferentiation) to solve problems;
- Connect concepts to their visual representations with and without technology;
- Identify a common underlying structure in problems involving different contextual situations.

Mathematical Practice For AP Calculus 3: Implementing algebraic/computational processes

- Select appropriate mathematical strategies;
- Sequence algebraic/computational procedures logically;
- Complete algebraic/computational processes correctly;
- Apply technology strategically to solve problems; attend to precision graphically, numerically, analytically, and verbally and specify units of measure;
- Connect the results of algebraic/computational processes to the question asked.

Mathematical Practice For AP Calculus 4: Building notational fluency

- Know and use a variety of notations (e.g., f'(x), y', dy/dx);
- Connect notation to definitions (e.g., relating the notation for the definite integral to that of the limit of a Riemann sum);
- Connect notation to different representations (graphical, numerical, analytical, and verbal);
- Assign meaning to notation, accurately interpreting the notation in a given problem and across different contexts.

Mathematical Practice For AP Calculus 5: Connecting Multiple Representations

- Associate tables, graphs, and symbolic representations of functions;
- Develop concepts using graphical, symbolical, or numerical representations with and without technology;
- identify how mathematical characteristics of functions are related in different representations;
- Extract and interpret mathematical content from any presentation of a function (e.g., utilize information from a table of values);
- Construct one representational form from another (e.g., a table from a graph or a graph from given information);
- Consider multiple representations of a function to select or construct a useful representation for solving a problem.

Mathematical Practice For AP Calculus 6: Communicating

• Clearly present methods, reasoning, justifications, and conclusions;

- Use accurate and precise language and notation;
- Explain the meaning of expressions, notation, and results in terms of a context (including units);
- Explain the connections among concepts;
- Critically interpret and accurately report information provided by technology;
- Analyze, evaluate, and compare the reasoning of others

MA.F-IF.A.1	Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x . The graph of f is the graph of the equation $y = f(x)$.
MA.F-IF.A.2	Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
MA.K-12.4	Model with mathematics.
MA.K-12.5	Use appropriate tools strategically.
MA.F-BF.A	Build a function that models a relationship between two quantities
MA.F-BF.A.1	Write a function that describes a relationship between two quantities.