*Unit 2 Linear Functions (10)

Content Area: Mathematics
Course(s): Integrated Modern Algebra
Time Period: October
Length:
Status:
10 Blocks
Published

Transfer Skills

In this unit students will focus on linear functions. An emphasis will be placed on slope and average rate of change. A main focus will be placed on the use of different forms of linear equations to identify key features both in and out of context.

Instructional Notes: Students need to have an in depth understanding of what makes a linear function considered linear. Linear functions will be compared to other functions in future units.

Enduring Understandings

A function is a relationship between variables in which each value of the input variable is associated with a unique value of the output variable

Functions can be represented in a variety of ways, such as graphs, tables, equations, or words. Each representation is particularly useful in certain situations

A function that models a real-world situation can then be used to make estimates or predictions about future occurrences.

Essential Questions

What can a linear equation tell us about the function?

What is the best method for determining the rate of change of a function?

Vocabulary

linear
slope
average rate of change
arithmetic sequence
explicit rule
recursive rule
standard form
slope-intercept form
point-slope form
parallel
perpendicular

Skills

Prove that linear functions grow by equal differences over equal intervals.

Given tables of values determine which represent linear functions and explain reasoning.

Graph linear functions from a table, an equation or a described relationship.

Construct linear functions, including arithmetic sequences, given a graph, a description of a relationship, a pattern or two input-output pairs and include reading these from a table. (Find slope given two points, write equations given various types of information.)

Write a linear function in different but equivalent forms to reveal and explain different properties of the function. These forms include slope-intercept form, standard form and point-slope form each revealing different properties. .

Rearrange the equation of a line into different forms (translate between slope-intercept form, standard form, and point-slope form).

Use technology to explore the effects of the parameters m and b in the linear function $f(x)=m x+b$ by holding first one parameter and then the other constant while allowing the other to vary. (Both in and out of context.)

Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval in order to identify linear functions.

Estimate the rate of change from a graph and compare rate of change associated with different intervals.

Find slopes of parallel and perpendicular lines and write equations for such.

Write both explicit and recursive formulas for arithmetic sequences and translate between the types. Graph the results.

Resources

KhanAcademy

YouTube Website for ALL Math Concepts from Arithmetic to Calculus www.youtube.com/user/bullcleo1

Math IXL

Standards

Functions

Interpreting Functions

HSF-IF A. Understand the concept of a function and use function notation

1. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=$ $\mathrm{f}(\mathrm{x})$.
2. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
3. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0)=f(1)=1, f(n+1)=f(n)+f(n-1)$ for $\mathrm{n} \geq 1$.

HSF-IF B. Interpret functions that arise in applications in terms of the context

4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. \star 5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. \star 6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. \star

HSF-IF C. Analyze functions using different representations

7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. \star
a. Graph linear and quadratic functions and show intercepts, maxima, and minima.

Building Functions

HSF-BF A. Build a function that models a relationship between two quantities

Mathematics I Standards for Mathematical Practice

1 Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

2 Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

4 Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

7 Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a
collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression x 2 $+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see 5 -$3(\mathrm{x}-\mathrm{y}) 2$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

MA.F-BF
MA.F-BF.A
MA.F-IF
MA.F-IF.A
MA.F-IF.A. 1

MA.F-IF.A. 2

MA.F-IF.A. 3

MA.F-IF.B
MA.F-IF.B. 4

MA.F-IF.B. 5

MA.F-IF.B. 6

MA.F-IF.C
MA.F-IF.C. 7

MA.F-IF.C.7a
MA.K-12.1
MA.K-12.2
MA.K-12.4
MA.K-12.7

Building Functions

Build a function that models a relationship between two quantities
Interpreting Functions
Understand the concept of a function and use function notation
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.

Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.
Interpret functions that arise in applications in terms of the context
For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.

Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.

Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Analyze functions using different representations
Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
Graph linear and quadratic functions and show intercepts, maxima, and minima.
Make sense of problems and persevere in solving them.
Reason abstractly and quantitatively.
Model with mathematics.
Look for and make use of structure.
Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical
situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well remembered $7 \times 5+7$ $\times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+9 x+$ 14 , older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-$ $y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

