Computer Science Essentials
Project Lead the Way

Curriculum

NJSLS Corresponding Career Readiness, Life Literacies, and Key Skills

Content Area:
Technology
Course(s):
Time Period:
Full Year
Length:
Full Year
Status:
Published
 NJSLS Corresponding Career Readiness, Life Literacies, and Key Skills

 9.4 Life Literacies and Key Skills

TECH.9.4.12.IML.2
Evaluate digital sources for timeliness, accuracy, perspective, credibility of the source, and relevance of information, in media, data, or other resources (e.g., NJSLSA.W8, Social Studies Practice: Gathering and Evaluating Sources.

TECH.9.4.12.CT.3
Enlist input from a variety of stakeholders (e.g., community members, experts in the field) to design a service learning activity that addresses a local or global issue (e.g., environmental justice).

TECH.9.4.12.DC.8
Explain how increased network connectivity and computing capabilities of everyday
objects allow for innovative technological approaches to climate protection.
TECH.9.4.12.CT.2
Explain the potential benefits of collaborating to enhance critical thinking and problem
solving (e.g., 1.3E.12profCR3.a).
TECH.9.4.12.IML.7
Develop an argument to support a claim regarding a current workplace or societal/ethical issue such as climate change (e.g., NJSLSA.W1, 7.1.AL.PRSNT.4).

TECH.9.4.12.IML.6
Use various types of media to produce and store information on climate change for
different purposes and audiences with sensitivity to cultural, gender, and age diversity (e.g., NJSLSA.SL5).

TECH.9.4.12.CI.1
Demonstrate the ability to reflect, analyze, and use creative skills and ideas (e.g.,
1.1.12prof.CR3a).
TECH.9.4.12.DC.7
Evaluate the influence of digital communities on the nature, content and responsibilities of careers, and other aspects of society (e.g., 6.1.12.CivicsPD.16.a).

TECH.9.4.12.CT.4
Participate in online strategy and planning sessions for course-based, school-based, or
other project and determine the strategies that contribute to effective outcomes.
TECH.9.4.12.TL.4
Collaborate in online learning communities or social networks or virtual worlds to analyze and propose a resolution to a real-world problem (e.g., 7.1.AL.IPERS.6).

TECH.9.4.12.IML.9
Analyze the decisions creators make to reveal explicit and implicit messages within
information and media (e.g., 1.5.12acc.C2a, 7.1.IL.IPRET.4).
TECH.9.4.12.IML.1
Compare search browsers and recognize features that allow for filtering of information. TECH.9.4.12.DC.2
Compare and contrast international differences in copyright laws and ethics.

TECH.9.4.12.IML.8
Evaluate media sources for point of view, bias, and motivations (e.g., NJSLSA.R6,
7.1.AL.IPRET.6).
TECH.9.4.12.DC.6
Select information to post online that positively impacts personal image and future college and career opportunities.

TECH.9.4.12.DC.3
Evaluate the social and economic implications of privacy in the context of safety, law, or
ethics (e.g., 6.3.12.HistoryCA.1).
TECH.9.4.12.DC.5
Debate laws and regulations that impact the development and use of software.
TECH.9.4.12.GCA.1
Collaborate with individuals to analyze a variety of potential solutions to climate change effects and determine why some solutions (e.g., political. economic, cultural) may work better than others (e.g., SL.11-12.1., HS-ETS1-1, HS-ETS1-2, HS-ETS1-4, 6.3.12.GeoGI.1, 7.1.IH.IPERS.6, 7.1.IL.IPERS.7, 8.2.12.ETW.3).

TECH.9.4.12.TL.1
Assess digital tools based on features such as accessibility options, capacities, and utility for accomplishing a specified task (e.g., W.11-12.6.).

TECH.9.4.12.CI.3
Investigate new challenges and opportunities for personal growth, advancement, and
transition (e.g., 2.1.12.PGD.1).
TECH.9.4.12.TL.2
Generate data using formula-based calculations in a spreadsheet and draw conclusions
about the data.
TECH.9.4.12.CT.1
Identify problem-solving strategies used in the development of an innovative product or practice (e.g., 1.1.12acc.C1b, 2.2.12.PF.3).

TECH.9.4.12.DC.1
Explain the beneficial and harmful effects that intellectual property laws can have on the creation and sharing of content (e.g., 6.1.12.CivicsPR.16.a).

TECH.9.4.12.IML.3
Analyze data using tools and models to make valid and reliable claims, or to determine
optimal design solutions (e.g., S-ID.B.6a., 8.1.12.DA.5, 7.1.IH.IPRET.8).
TECH.9.4.12.IML.4
Assess and critique the appropriateness and impact of existing data visualizations for an intended audience (e.g., S-ID.B.6b, HS-LS2-4).

TECH.9.4.12.TL.3
Analyze the effectiveness of the process and quality of collaborative environments. TECH.9.4.12.CI.2
Identify career pathways that highlight personal talents, skills, and abilities (e.g.,

1.4.12prof.CR2b, 2.2.12.LF.8).
TECH.9.4.12.DC.4
Explain the privacy concerns related to the collection of data (e.g., cookies) and generation of data through automated processes that may not be evident to users (e.g., 8.1.12.NI.3).

TECH.9.4.12.IML.5
Evaluate, synthesize, and apply information on climate change from various sources
appropriately (e.g., 2.1.12.CHSS.6, S.IC.B.4, S.IC.B.6, 8.1.12.DA.1, 6.1.12.GeoHE.14.a, 7.1.AL.PRSNT.2).
 9.2 Career Awareness

WRK.9.2.12.CAP.22
Compare risk and reward potential and use the comparison to decide whether starting a business is feasible.

WRK.9.2.12.CAP.11
Demonstrate an understanding of Free Application for Federal Student Aid (FAFSA)
requirements to apply for postsecondary education.
WRK.9.2.12.CAP.4
Evaluate different careers and develop various plans (e.g., costs of public, private, training schools) and timetables for achieving them, including educational/training requirements, costs, loans, and debt repayment.

WRK.9.2.12.CAP.7
Use online resources to examine licensing, certification, and credentialing requirements at the local, state, and national levels to maintain compliance with industry requirements in areas of career interest.

WRK.9.2.12.CAP.18
Differentiate between taxable and nontaxable income from various forms of employment (e.g., cash business, tips, tax filing and withholding).

WRK.9.2.12.CAP.19
Explain the purpose of payroll deductions and why fees for various benefits (e.g., medical benefits) are taken out of pay, including the cost of employee benefits to employers and self-employment income.

WRK.9.2.12.CAP.13
Analyze how the economic, social, and political conditions of a time period can affect the
labor market.
WRK.9.2.12.CAP.15
Demonstrate how exemptions, deductions, and deferred income (e.g., retirement or
medical) can reduce taxable income.
WRK.9.2.12.CAP.1
Analyze unemployment rates for workers with different levels of education and how the economic, social, and political conditions of a time period are affected by a recession.

WRK.9.2.12.CAP.17
Analyze the impact of the collective bargaining process on benefits, income, and fair labor practice.
WRK.9.2.12.CAP.12
Explain how compulsory government programs (e.g., Social Security, Medicare) provide
insurance against some loss of income and benefits to eligible recipients.
WRK.9.2.12.CAP.14
Analyze and critique various sources of income and available resources (e.g., financial
assets, property, and transfer payments) and how they may substitute for earned income.
WRK.9.2.12.CAP.9
Locate information on working papers, what is required to obtain them, and who must
sign them.
WRK.9.2.12.CAP.6
Identify transferable skills in career choices and design alternative career plans based on those skills.

WRK.9.2.12.CAP.21
Explain low-cost and low-risk ways to start a business.
WRK.9.2.12.CAP.16
Explain why taxes are withheld from income and the relationship of federal, state, and
local taxes (e.g., property, income, excise, and sales) and how the money collected is used by local, county, state, and federal governments.

WRK.9.2.12.CAP.8
Determine job entrance criteria (e.g., education credentials, math/writing/reading
comprehension tests, drug tests) used by employers in various industry sectors.
WRK.9.2.12.CAP.23
Identify different ways to obtain capital for starting a business.
WRK.9.2.12.CAP.3
Investigate how continuing education contributes to one's career and personal growth.
WRK.9.2.12.CAP.10
Identify strategies for reducing overall costs of postsecondary education (e.g., tuition
assistance, loans, grants, scholarships, and student loans).
WRK.9.2.12.CAP.2
Develop college and career readiness skills by participating in opportunities such as
structured learning experiences, apprenticeships, and dual enrollment programs.
WRK.9.2.12.CAP.20
Analyze a Federal and State Income Tax Return.

	Unit 1 Overview

	Content Area: Computer Science Essentials - Project Lead the Way

	Unit Title: Unit 1 : Creative Computing: Building with Blocks – 45 Days

	Target Course/Grade Levels: Introduction to Computer Science Essentials- Project Lead The Way / 9-12

	Unit Summary: This unit welcomes new and returning students to the world of computer science and coding fundamentals. Students work with MIT App Inventor to create basic apps that rely on the concepts of event-driven programming, branching, iteration, variables, and abstraction—the building blocks of creating with code. Students are introduced to essential computational thinking practices, such as developing abstractions, collaborating around computing, and communicating as they create, test, and refine computational artifacts of Android apps.
Essential Questions
1. What information is being hidden or abstracted by a program?

2. Why are user stories and user-centered design so important when creating an app?

3. What are the advantages and challenges of pair programming?

4. What does it mean for data to persist?

5. Why are APIs such an essential tool in computer science today?

6. Why is sharing code and looking at many examples important to people writing programs?

7. What are some advantages to programming in a text-based language compared to a block-based programming language?

21st-Century Life & Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

	Learning Targets

	Standards: 8.2 Technology Education, Engineering, and Design All students will develop an understanding of the nature and impact of technology, engineering, technological design, and the designed world, as they relate to the individual, global society, and the environment.

	Content Statements:
A. Nature of Technology: Creativity and Innovation: Technology products and systems impact every aspect of the world in which we live.
B. Design: Critical Thinking, Problem Solving, and Decision-Making: The design process is a systematic approach to solving problems.
C. Technological Citizenship, Ethics, and Society: Knowledge and understanding of human, cultural, and societal values are fundamental when designing technology systems and products in the global society
E. Communication and Collaboration: Digital tools facilitate local and global communication and collaboration in designing products and systems.
F. Resources for a Technological World: Technological products and systems are created through the application and appropriate use of technological resources.
G. The Designed World: The designed world is the product of a design process that provides the means to convert resources into products and systems.

	Goals:

· Preview Computer Science Essentials

· Learn block-based programming

· Get started with MIT App Inventor

· Develop an app independently for creative expression
· Learn coding fundamentals

· Apply file naming conventions and version control

· Develop and test an app incrementally

· Develop an app independently for a physical game

· Learn how to use conditionals to make choices in a program

· Learn to use modifiers to create chained conditionals

· Personalize the user interface and features of an app incrementally

· Apply coding fundamentals to create algorithms

· Develop an app independently for a physical game

· Learn when to use local variables and global variables

· Write programs as pseudocode and in a natural language

· Develop an app independently for multiplayer game play

· Learn to use while loops in a program

· Learn to increment a count

· Apply coding fundamentals to create algorithms

· Pair program to develop an app for single-player gaming

· Learn a problem-solving process

· Practice communication skills to interview end users of an app

· Generate ideas for possible problem solving in the future

· Learn how databases and lists allow data to be collected, persist, and be retrieved

· Develop an app as part of a pair programming collaboration

· Identify ethical considerations that impact all users

· Learn how application programming interfaces (API) connect different computing devices

· Apply algorithms to automate attempts to discover a password

· Decompose a project into smaller parts

Students will be able exhibit the following professional skills:

• Team collaboration

• Project management

• Problem-solving

• Communication skills

• Presentation skills

• Technical writing

• Ethical practice

• Global perspective

	Students will be able to show understanding of the following concepts:

• Careers in Computer Science
• Computer Science disciplines

• STEM careers related to course content

• Professional ethics

• Design Process

• MIT App Inventor

• APIs

• Block Programming

• Abstraction

• Event handlers

• Variables

• Code execution

• Debugging

• Procedures and arguments

• Iteration

• Loops

• Lists

• Nested conditionals

• Different user clicks

	Unit 1 Framework

	Transportable Knowledge and Skills
Core workplace skills that students and workers need to acquire, that can be used across all stages of a career, and that, because of their universal utility, are transportable from job to job, from employer to employer, across the economy.

Career Readiness (CAR):

Today computing impacts almost all careers. There are career specializations within computer science such as software development, security, network, and systems administration.

CAR1-B Explain how computing has impacted innovation in other fields.

CAR1-B.2 Describe how computing enables innovation by providing the ability to access and share information.

Communication (COM):

Computing professionals must be able to explain and justify the design and appropriateness of their computational choices, and analyze and describe both computational artifacts and the results or behaviors of such artifacts.

COM1-A Communicate ideas, processes, and products to optimize audience perception and understanding.

 COM1-A.1 Create program documentation that helps programmers develop and maintain correct programs to efficiently solve problems.

 COM1-A.2 Create documentation about program components, such as code segments and procedures, that helps in developing and maintaining programs.

 COM1-A.3 Create documentation that helps in developing and maintaining programs when working individually or in collaborative programming environments.

 COM1-A.4 Summarize the purpose of a computational artifact.

 COM1-A.5 Communicate which portions of a program you developed independently and which were created collaboratively.

Collaboration (COL):

Diverse perspectives, good interpersonal relationships, and effective collaboration strategies generate the most robust and innovative solutions.

COL1-A Collaborate when processing information to gain insight and knowledge.
 COL1-A.2 Understand that collaboration facilitates solving computational problems by applying multiple perspectives, experiences, and skill sets.
COL1-B Collaborate to develop a program.

 COL1-B.1 Understand that collaboration can decrease the size and complexity of tasks required of individual programmers.

 COL1-B.2 Understand that collaboration facilitates multiple perspectives in developing ideas for solving problems by programming.
 COL1-B.3 Understand that collaboration in the iterative development of a program requires different skills than developing a program alone.

 COL1-B.4 Understand that collaboration can make it easier to find and correct errors when developing programs.

 COL1-B.5 Understand that collaboration facilitates developing program components independently.

COL1-C Apply project management strategies effectively as part of a team.

 COL1-C.1 Prioritize short-term and long-term objectives using an Agile methodology when working on a project.

 COL1-C.3 Work with a group to establish team norms.

 COL1-C.4 Establish clear responsibilities and split workloads equitably.

Ethical Reasoning and Mindset (ERM):

Computing professionals must make decisions regularly regarding their professional and social conduct when collaborating with developers and engaging with users to get feedback.

ERM1-A Abide by professional standards when creating value for people and society.

 ERM1-A.1 Create and maintain a secure professional identity for accessing IDEs and accessing computer science communities.

ERM1-B Access, manage, and attribute information using effective strategies.

 ERM1-B.1 Understand that online databases and libraries catalog and house secondary and some primary sources.

 ERM1-B.2 Understand that plagiarism is a serious offense that occurs when a person presents another’s ideas or words as his or her own. Plagiarism may be avoided by accurately acknowledging sources.
ERM1-C Consider accessibility and equity when designing products, creating solutions, and collaborating with others.

 ERM1-C.1 Explain how diversity on development teams is essential for producing outcomes that serve a diverse audience.

ERM1-D Evaluate online and print sources for appropriateness and credibility.

 ERM1-D.1 Evaluate the credibility of a source by considering reputation and credentials of the author(s), publisher(s), site owner(s), and/or sponsor(s).

 ERM1-D.2 Evaluate the relevancy of information from a source and if it supports an appropriate claim or the purpose of the investigation.

Critical and Creative Problem-Solving (CCP):

Computing is a creative activity. Creativity and computing are prominent forces in innovation; the innovations enabled by computing have had and will continue to have far-reaching impact.

CCP1-A Apply a creative development process when creating computational artifacts.

 CCP1-A.1 Translate ideas into tangible form by creating computational artifacts and employing an iterative and exploratory process.

CCP1-B Create a computational artifact for creative expression.

CCP1-B.1 Identify a computational artifact as something created by a human using a computer and differentiate between a program, an image, an audio, a video, a presentation, or a web page file.

CCP1-B.2 Discuss how creativity, collaboration, and curiosity can lead to innovation.

CCP1-C Describe moments within a process where curiosity, persistence, and the positive aspect of failure played an important role in gaining understanding about a problem or unexpected observation.

CCP1-C.1 Describe difficulties and/or opportunities you encountered and how they were resolved or incorporated.

CCP1-D Engage stakeholders in a problem and use their perspectives to shape the course of your development.

CCP1-D.1 Identifying programmer and user concerns that affect the solution to problems.

CCP1-D.2 Consult and communicate with program users in program development to solve problems.

CCP1-E Apply and describe an iterative process based on user-centered research to solve a problem.

CCP1-E.1 Apply and describe an iterative process used during the development of a solution.

CCP1-E.2 Use user-centered research and design techniques to create software solutions.

CCP1-F Identify and apply decomposition as a critical step in problem solving.

CCP1-F.1 Deconstruct a complex project or problem into smaller discrete modules that can be developed independently, then incorporated together at a later time.

CCP1-F.2 Deconstruct a complex problem into simpler parts using predefined constructs (e.g., functions and parameters and/or classes).

CCP1-G Explain how people participate in a problem-solving process that scales.

CCP1-G.1 Describe how human capabilities are enhanced by digitally enabled collaboration.

CCP1-G.2 Explain how services use the contributions of many people to benefit both individuals and society.

 CCP1-G.3 Explain how the move from desktop computers to a proliferation of always-on mobile computers is leading to new applications.

Technical Knowledge and Skills
Every career field requires technical literacy and career-specific knowledge and skills to support professional practice.

Algorithms and Programming (AAP):

Algorithms are used to develop and express solutions to computational problems. Algorithms are fundamental to even the most basic everyday task.

Programming enables problem solving, human expression, and creation of knowledge. Any particular programming language is selected based on appropriateness for a specific project or problem.

People use computer programs to process information to gain insight and knowledge.

AAP1-A Develop an algorithm for implementation in a program.

 AAP1-A.1 Understand that sequencing, selection, and iteration are building blocks of algorithms.

 AAP1-A.2 Understand that sequencing is the application of each step of an algorithm in the order in which the statements are given.

 AAP1-A.3 Use a Boolean condition or selection to determine which of two parts of an algorithm are used.

 AAP1-A.4 Use Iteration or repetition of a part of an algorithm until a condition is met or until a specified number of times have been completed.

 AAP1-A.5 Combine algorithms to make new algorithms and explain how they function both independently and together.

 AAP1-A.6 Use existing correct algorithms as building blocks for constructing a new algorithm to help ensure the new algorithm is correct.

 AAP1-A.7 Identify different algorithms that can be developed to solve the same problem.

 AAP1-A.8 Implement and analyze common patterns employing variables and iteration, including “for” loops iterating across a list, value accumulation, and list aggregation.

AAP1-B Express an algorithm in a language.

AAP1-B.1 Contrast the languages for algorithms including natural language, pseudocode, and visual and textual programming languages.

AAP1-B.2 Write in natural language and pseudocode to describe algorithms so that humans can understand them.

AAP1-B.4 Understand that every algorithm can be constructed using only sequencing, selection, and iteration.

AP1-C Creative Expression in Programming - Develop a program for creative expression, to satisfy personal curiosity, or to create new knowledge.

 AAP1-C.1 Develop programs used in a variety of ways by a wide range of people.

AAP1-C.2 Understand that programs developed for creative expression, to satisfy personal curiosity, or to create new knowledge may have visual, audible, or tactile inputs and outputs.

AAP1-D Iteration in Programming - Create programs by writing and testing code in a modular, incremental approach.

AAP1-D.1 Describe how an iterative process of program development helps in developing a correct program to solve problems.

 AAP1-D.2 Incrementally add tested program segments to correct working programs to help create larger correct programs.

 AAP1-D.3 Adapt or improve existing code.

AAP1-E Algorithms in Programs - Explain how programs implement algorithms.

 AAP1-E.1 Understand that program instructions are executed sequentially.

 AAP1-E.2 Describe how program instructions may involve variables that are initialized and updated, read, and written.

AAP1-F Abstraction in Programs - Use an abstraction to manage complexity in programs.

 AAP1-F.1 Understand that procedures are reusable programming abstractions.

 AAP1-F.2 Understand that a procedure is a named grouping of programming instructions.

 AAP1-F.3 Use procedures to reduce the complexity of writing and maintaining programs.

 AAP1-F.4 Understand that procedures have names and may have parameters and return values.

 AAP1-F.6 Use parameters to generalize a solution by allowing a procedure to be used instead of duplicated code.

 AAP1-F.7 Understand that parameters provide different values as input to procedures when they are called in a program.

 AAP1-F.8 Use lists and list operations, such as add, remove, and search.

AAP1-G Mathematical and Logic Concepts in Programming - Employ and describe appropriate mathematical and logical concepts in programming.

 AAP1-G.1 Understand that strings and string operations, including concatenation and some form of substring, are common in many programs.

 AAP1-G.2 Recognize that numbers and numerical concepts are fundamental to programming.

 AAP1-G.3 Understand that real numbers are approximated by floating-point representations that do not necessarily have infinite precision.

 AAP1-G.4 Understand that mathematical expressions using arithmetic operators are part of most programming languages.

 AAP1-G.5 Understand that logical concepts and Boolean algebra are fundamental to programming.

 AAP1-G.6 Use compound expressions using and, or, and not.

 AAP1-G.7 Use computational methods such as lists and collections to solve problems.

 AAP1-G.8 Understand that lists and other collections can be treated as abstract data types (ADTs) in developing programs.

 AAP1-G.9 Understand there are basic operations on collections including adding elements, removing elements, iterating over all elements, and determining whether an element is in a collection.

AAP1-H Describe an abstraction used when writing a program or creating other computational artifacts.

 AAP1-H.1 Create an abstraction that generalizes functionality with input parameters that allow reuse.

 AAP1-H.2 Represent multiple levels of abstractions, such as constants, expressions, statements, procedures, and libraries.

 AAP1-H.3 Describe how an abstraction is used to manage complexity in a specific program.

Computational Tools and Techniques (CTT):

Computing involves the application of collaboration tools, programming tools, mathematical principles, and techniques to manage developments.

CTT1-A Select and apply appropriate computational tools and techniques to solve a problem or create value for others.

 CTT1-A.1 Select tools for collaborating for data collection, writing, or programming.

 CTT1-A.2 Gain understanding of software tools and services while creating computational artifacts.

 CTT1-A.3 Apply computing tools and techniques to create computational artifacts including, but not limited to, programming integrated development environments (IDEs).

 CTT1-A.4 Navigate and use unfamiliar documentation and public information to extend the student's own knowledge of a programming language or to achieve a computational approach to solve a problem.

CTT1-B Apply a system of version control effectively.
 CTT1-B.1 Maintain successive versions of a digital product during development.

Computer Systems and Networks (CSN):

The internet pervades modern computing. The internet and the systems built on it have had a profound impact on society. Computer networks support communication and collaboration.

CSN1-A Explain characteristics of the internet and the systems built on it.

 CSN1-A.1 Understand that interfaces and protocols enable widespread use of the internet.

 CSN1-A.2 Use application programing interfaces (APIs) to connect all devices.

Cybersecurity (SEC):
Cybersecurity is an important concern for the internet and the systems built on it.

SEC1-A Identify existing cybersecurity concerns and potential options to address these issues with the internet and the systems built on it.

 SEC1-A.1 Explain how implementing cybersecurity has software, hardware, and human components.

 SEC1-A.2 Understand that cyberwarfare and cybercrime have widespread and potentially devastating effects.
 SEC1-A.3 Understand that phishing, viruses, and other attacks have human and software components.

SEC1-B Identify user actions that strengthen the security of a networked computing system.

 SEC1-B.1 Describe secure practices related to passwords, antivirus software, software updates, and posting content online.

 SEC1-B.2 Identify the unique circumstances in which penetration testing is legal and ethical.

Data (DAT):

Data and information facilitate the creation of knowledge. Managing and interpreting an overwhelming amount of raw data is part of the foundation of our information society and economy.

DAT1-A Collect, organize, and explore real and simulated data.
 DAT1-A.1 Identify tools and creative methods to collect and process data.

DAT1-B Describe the variety of abstractions used to represent data.

 DAT1-B.1 Understand that high-level programming languages provide more abstractions for the programmer and make it easier for people to read and write a program.

 DAT1-B.2 Identify what has been made more general by an abstraction and identify what details have been hidden or removed.

 DAT1-B.3 Describe the role of abstraction in handling complexity. (e.g., abstraction in programming languages, procedural abstraction).

 DAT1-B.4 Identify advantages and disadvantages of working at high and low levels of abstraction.
Impacts of Computing (IOC):
Computing affects economic, environmental, and societal contexts.

IOC1-A Explain the connections between computing and real-world contexts, including economic, social, and cultural contexts.

 IOC1-A.1 Describe how mobile, wireless, and networked computing has an impact on innovation throughout the world.

	Unit 1 Lessons

	Lesson Title:
	Timeframe (Periods)
	Knowledge & Skills

	Lesson 1.1 Introduction to Computer Science Essentials
Mobile computing has changed our world, and many of today’s students have never known a life without apps. This lesson gives students the tools they need to create their own apps using MIT App Inventor. The goal of this lesson is to introduce students to coding fundamentals through block-based programming. Students will develop independent and collaborative strategies that will help them communicate around computing as they learn and reinforce the fundamental concepts of coding. With a powerful yet approachable tool, students will use their creativity to produce computational artifacts like those that are essential to all of us today.
	19 days
	KS 1.1.2

KS 1.2.2

KS 1.3.1

KS 1.4.2

KS 2.1.2

KS 2.1.3

KS 2.1.4

KS 2.1.5

KS 2.1.6

KS 2.1.7

KS 3.1.2

KS 3.2.1

KS 3.2.2

KS 3.2.3

KS 3.2.4

KS 4.1.1

KS 4.1.2

KS 4.2.1

KS 4.2.2

KS 4.1.2

KS 6.2.1

KS 7.1.3

KS 7.2.4

KS 7.3.1

KS 7.3.2

KS 8.1.1

KS 8.1.2

KS 8.1.3

KS 8.1.4

KS 10.1.1

KS 10.1.2

KS 10.1.3

KS 12.2.1

KS 12.4.1

KS 12.4.2

KS 13.1.2

KS 13.2.1

	Lesson 1.2 Collaborating Around Computing
This lesson focuses on collaborative strategies that coding professionals use when creating programs and applications, while it continues to introduce essential concepts in computer science and coding. The lesson also introduces the idea that computer science can be more than just innovation and creative expression; it can be powerful in trying to solve many problems in today’s world. Students apply an Agile development process and task decomposition to solve a problem that meets the needs of others.
	17 days
	KS 1.2.2

KS 2.1.3

KS 2.1.5

KS 7.3.2

KS 8.1.3

KS 12.5.1

KS 13.1.1

KS 13.1.2

KS 13.3.2

KS 13.3.3

KS 13.3.4

KS 13.3.6

KS 13.5.1

KS 13.5.2

KS 13.6.1

KS 13.6.2

	Lesson 1.3 Innovation and Problem Solving
The final lesson of this unit gives students the freedom to select the focus of their development in choosing the type of app they would like to collaborate to create. Student groups will apply development strategies and user-centered research to create an app that has value to others. Students will gain insight on the importance of creativity, persistence, and value of diverse perspectives in an iterative development process.
	9 days
	 KS 1.1.2

KS 1.2.2

KS 1.2.3

KS 1.3.2

KS 2.1.2

KS 2.1.3

KS 2.1.4

KS 2.1.5

KS 2.1.6

KS 3.1.1

KS 3.2.2

KS 3.2.3

KS 7.3.2

KS 8.1.2

KS 8.1.3

KS 8.1.4

KS 10.1.2

KS 10.1.3

KS 10.1.4

KS 13.1.1

KS 13.1.2

KS 13.3.3

KS 13.3.5

KS 13.3.6

KS 13.3.7

KS 13.5.1

KS 13.5.2

KS 13.6.1

KS 13.6.2

	Activity Timeframes

	Activity Title:
	Timeframe (days)

	Activity 1.1.1 Getting Started with Block-Based Programming: Digital Doodle
	3 days

	Activity 1.1.2 Algorithms and Coding Fundamentals: Happy Accelerometer
	3 days

	Activity 1.1.3 Conditionals and Event-Driven Programming: Happy Balance
	2 days

	Activity 1.1.4 Local and Global Variables: Guessing Game 2 Player
	3 days

	Activity 1.1.5 Iteration and Loops: Guessing Game 1 Player
	3 days

	Project 1.1.6 App Development: Creative Expression
	5 days

	Activity 1.2.1 Problem Solving: Interview Database
	2 days

	Activity 1.2.2 Algorithms and APIs: Hack Attack
	3 days

	Activity 1.2.3 Procedural Abstraction: Price per Slice
	3 days

	Activity 1.2.4 Lists: Survey Says
	3 days

	Project 1.2.5 App Development: Problem Solving and Innovation
	6 days

	Activity 1.3.1 App Development: Creating Value for Others
	9 days

	CPI #
	Cumulative Progress Indicator (CPI)

	8.2.12.A.1
	Design and create a technology product or system that improves the quality of life and identify trade-offs, risks, and benefits.

	8.2.12.B.1
	Design and create a product that maximizes conservation and sustainability of a scarce resource, using the design process and entrepreneurial skills throughout the design process.

	8.2.12.B.2
	Design and create a prototype for solving a global problem, documenting how the proposed design features affect the feasibility of the prototype through the use of engineering, drawing, and other technical methods of illustration.

	8.2.12.B.3
	Analyze the full costs, benefits, trade-offs, and risks related to the use of technologies in a potential career path.

	8.2.12.C.1
	Analyze the ethical impact of a product, system, or environment, worldwide, and report findings in a web-based publication that elicits further comment and analysis.

	8.2.12.C.2
	Evaluate ethical considerations regarding the sustainability of resources that are used for the design, creation, and maintenance of a chosen product.

	8.2.12.C.3
	Evaluate the positive and negative impacts in a design by providing a digital overview of a chosen product and suggest potential modifications to address the negative impacts.

	8.2.12.E.1
	Use the design process to devise a technological product or system that addresses a global issue, and provide documentation through drawings, data, and materials, taking the relevant cultural perspectives into account throughout the design and development process.

	8.2.12.F.1
	Determine and use the appropriate application of resources in the design, development, and creation of a technological product or system.

	8.2.12.F.2
	Explain how material science impacts the quality of products.

	8.2.12.F.3
	Select and utilize resources that have been modified by digital tools (e.g., CNC equipment, CAD software) in the creation of a technological product or system.

	8.2.12.G.1
	Analyze the interactions among various technologies and collaborate to create a product or system demonstrating their interactivity.

	Evidence of Learning

	Formative Assessments:

1. Daily question and response as we go along in the topic

2. Students will be asked to provide examples of certain ideas, or to apply ideas to samples of their own choosing.

3. Student work will be assessed according to the PLTW rubrics
4. Peer review ability

5. Ability to work together with other students

	Summative Assessment:
1. Creative Expression App.

2. Students will be graded on their programming set up and different criteria deadlines.

3. Problem Solving App.

	Additional Materials

	Digital Tools & Resources :
• Microsoft Office (Excel, Word, PowerPoint)

• MIT App Inventor
• Google Access

• Android or Apple Device/tablet

	Primary & Secondary Resources
• PLTW student website

• PLTW resource package

	Unit 2 Overview

	Content Area: Computer Science Essentials - Project Lead The Way

	Unit Title: Unit 2: Computing and Society: Transitions to Text – 45 Days

	Target Course/Grade Levels: Computer Science Essentials - Project Lead The Way / 9-12

	Unit Summary: This unit continues to reinforce coding fundamentals as students are gradually introduced to text-based programming. In this unit, students will explore the impacts of computer science on our society and bring coding off the screen and into the physical world. Students will learn how images can be used to make decisions in programs and explore real-world applications and innovations that will shape our future.

Essential Questions
1. How realistic is it to expect coding professionals to be experts on all programming languages? What are they really experts at?

2. Why are collections (like arrays or lists) are an essential concept in programs?

3. How has mobile, wireless, and networked computing had an impact on innovation throughout the world?

4. Why are diverse perspectives and user stories so important when developing an app?

5. What are some advantages and challenges of cloud computing?
21st-Century Life & Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

	Learning Targets

	Standards: 8.2 Technology Education, Engineering, and Design All students will develop an understanding of the nature and impact of technology, engineering, technological design, and the designed world, as they relate to the individual, global society, and the environment.

	Content Statements:
A. Nature of Technology: Creativity and Innovation: Technology products and systems impact every aspect of the world in which we live.
B. Design: Critical Thinking, Problem Solving, and Decision-Making: The design process is a systematic approach to solving problems.
C. Technological Citizenship, Ethics, and Society : Knowledge and understanding of human, cultural, and societal values are fundamental when designing technology systems and products in the global society
D. Communication and Collaboration: Digital tools facilitate local and global communication and collaboration in designing products and systems.
E. Resources for a Technological World: Technological products and systems are created through the application and appropriate use of technological resources.
F. The Designed World: The designed world is the product of a design process that provides the means to convert resources into products and systems.

	Goals:

· Compare and contrast lower-level programming languages with higher-level programming languages

· Learn basic rules related to programming with syntax

· Get started with the interactive code editor

· Develop programs independently that uncover what is abstracted in block-based programming languages

· Apply coding fundamentals to devices that move in the real world

· Get started with VEXcode® V5

· Learn how to program a VEX® Self-Driving Vehicle.

· Use lists in a program

· Modify and develop a program collaboratively that uses lists

· Use two-dimensional lists in a program

· Collaboratively modify and develop a program that uses two-dimensional lists

· Develop a computational artifact independently to explore an innovation, career, or ethical consideration of computer science that interest you.
· Learn what information can be provided by machine vision systems and object recognition software

· Apply machine vision to identify and differentiate between objects

· Modify and develop a program collaboratively to identify objects and patterns using machine vision

· Apply machine vision and conditionals

· Modify and develop a program collaboratively

· Decompose a project into smaller parts

· Apply coding fundamentals and iterative processes

· Develop a program as part of a team to solve a problem

	Students will be able exhibit the following professional skills:

• Team collaboration

• Project management

• Problem-solving

• Communication skills

• Presentation skills

• Technical writing

• Ethical practice
• Global perspective

	Students will be able show understanding of the following concepts:

• Careers in Computer Science
• Computer Science disciplines

• STEM careers related to course content

• Professional ethics

• Design Process

• MIT App Inventor

• APIs

• Block Programming

• Abstraction

• Event handlers

• Event-driven programming
• Variables

• Code execution

• Debugging

• Procedures and arguments

• Iteration
• VEX VR

• Data Types and Logic
• Loops and iterations in loops
• Lists

• Nested conditionals

• Different user clicks
• Precision and Accuracy
• Algorithms
• Strings and Concatenation
• Arithmetic Operators, Relational Operators, and Logical Operators
• Physical modeling and prototyping
• Pattern recognition

• Broadcasting

	Unit 2 Framework

	Transportable Knowledge and Skills
Core workplace skills that students and workers need to acquire, that can be used across all stages of a career, and that, because of their universal utility, are transportable from job to job, from employer to employer, across the economy.

Career Readiness (CAR):

Today computing impacts almost all careers. There are career specializations within computer science such as software development, security, network, and systems administration.

CAR1-A Describe career paths within the computing specialties.

 CAR1-A.1 Describe a variety of careers within the computing specialties.
 CAR1-A.2 Recognize the education and credentialing requirements for careers within computing specialties.

 CAR1-A.3 Demonstrate the initiative and independent learning required to stay current with evolving technology and career needs.

CAR1-B Explain how computing has impacted innovation in other fields.

 CAR1-B.1 Describe how scientific computing has enabled innovation in science and business.

 CAR1-B.3 Describe how advances in computing has enabled technology to generate and increase the creativity in other fields.

Communication (COM):

Computing professionals must be able to explain and justify the design and appropriateness of their computational choices, and analyze and describe both computational artifacts and the results or behaviors of such artifacts.

COM1-A Communicate ideas, processes, and products to optimize audience perception and understanding.

 COM1-A.1 Create program documentation that helps programmers develop and maintain correct programs to efficiently solve problems.

 COM1-A.2 Create documentation about program components, such as code segments and procedures, that helps in developing and maintaining programs.

 COM1-A.3 Create documentation that helps in developing and maintaining programs when working individually or in collaborative programming environments.

Collaboration (COL):

Diverse perspectives, good interpersonal relationships, and effective collaboration strategies generate the most robust and innovative solutions.
COL1-B Collaborate to develop a program.

 COL1-B.1 Understand that collaboration can decrease the size and complexity of tasks required of individual programmers.

 COL1-B.2 Understand that collaboration facilitates multiple perspectives in developing ideas for solving problems by programming.

 COL1-B.3 Understand that collaboration in the iterative development of a program requires different skills than developing a program alone.
 COL1-B.4 Understand that collaboration can make it easier to find and correct errors when developing programs.

Ethical Reasoning and Mindset (ERM):

Computing professionals must make decisions regularly regarding their professional and social conduct when collaborating with developers and engaging with users to get feedback.

ERM1-A Abide by professional standards when creating value for people and society. ERM1-A.3 Engage others with respect and forethought.

ERM1-B Access, manage, and attribute information using effective strategies.

 ERM1-B.1 Understand that online databases and libraries catalog and house secondary and some primary sources.

 ERM1-B.2 Understand that plagiarism is a serious offense that occurs when a person presents another’s ideas or words as his or her own. Plagiarism may be avoided by accurately acknowledging sources.
ERM1-D Evaluate online and print sources for appropriateness and credibility.

 ERM1-D.1 Evaluate the credibility of a source by considering reputation and credentials of the author(s), publisher(s), site owner(s), and/or sponsor(s).

 ERM1-D.2 Evaluate the relevancy of information from a source and if it supports an appropriate claim or the purpose of the investigation.

Critical and Creative Problem-Solving (CCP):

Computing is a creative activity. Creativity and computing are prominent forces in innovation; the innovations enabled by computing have had and will continue to have far-reaching impact.

CCP1-A Apply a creative development process when creating computational artifacts.

 CCP1-A.1 Translate ideas into tangible form by creating computational artifacts and employing an iterative and exploratory process.

CCP1-B Create a computational artifact for creative expression.

 CCP1-B.1 Identify a computational artifact as something created by a human using a computer and differentiate between a program, an image, an audio, a video, a presentation, or a web page file.

 CCP1-B.2 Discuss how creativity, collaboration, and curiosity can lead to innovation.
CCP1-C Describe moments within a process where curiosity, persistence, and the positive aspect of failure played an important role in gaining understanding about a problem or unexpected observation.

 CCP1-C.1 Describe difficulties and/or opportunities you encountered and how they were resolved or incorporated.

CCP1-D Engage stakeholders in a problem and use their perspectives to shape the course of your development.

 CCP1-D.1 Identifying programmer and user concerns that affect the solution to problems.

 CCP1-D.2 Consult and communicate with program users in program development to solve problems.
CCP1-E Apply and describe an iterative process based on user-centered research to solve a problem.
 CCP1-E.1 Apply and describe an iterative process used during the development of a solution.
 CCP1-E.2 Use user-centered research and design techniques to create software solutions.
CCP1-F Identify and apply decomposition as a critical step in problem solving.

 CCP1-F.1 Deconstruct a complex project or problem into smaller discrete modules that can be developed independently, then incorporated together at a later time.

 CCP1-F.2 Deconstruct a complex problem into simpler parts using predefined constructs (e.g., functions and parameters and/or classes).

Algorithms and Programming (AAP):

Algorithms are used to develop and express solutions to computational problems. Algorithms are fundamental to even the most basic everyday task.

Programming enables problem solving, human expression, and creation of knowledge. Any particular programming language is selected based on appropriateness for a specific project or problem.

People use computer programs to process information to gain insight and knowledge. AAP1-A Develop an algorithm for implementation in a program.
AP1-A Develop an algorithm for implementation in a program.

 AAP1-A.1 Understand that sequencing, selection, and iteration are building blocks of algorithms.
 AAP1-A.2 Understand that sequencing is the application of each step of an algorithm in the order in which the statements are given.

 AAP1-A.3 Use a Boolean condition or selection to determine which of two parts of an algorithm are used.

 AAP1-A.4 Use Iteration or repetition of a part of an algorithm until a condition is met or until a specified number of times have been completed.

 AAP1-A.5 Combine algorithms to make new algorithms and explain how they function both independently and together.

 AAP1-A.6 Use existing correct algorithms as building blocks for constructing a new algorithm to help ensure the new algorithm is correct.

 AAP1-A.8 Implement and analyze common patterns employing variables and iteration, including “for” loops iterating across a list, value accumulation, and list aggregation.

AAP1-B Express an algorithm in a language.

 AAP1-B.1 Contrast the languages for algorithms including natural language, pseudocode, and visual and textual programming languages.

 AAP1-B.2 Write in natural language and pseudocode to describe algorithms so that humans can understand them.
AAP1-C Creative Expression in Programming - Develop a program for creative expression, to satisfy personal curiosity, or to create new knowledge.

 AAP1-C.2 Understand that programs developed for creative expression, to satisfy personal curiosity, or to create new knowledge may have visual, audible, or tactile inputs and outputs.

AAP1-D Iteration in Programming - Create programs by writing and testing code in a modular, incremental approach.

 AAP1-D.1 Describe how an iterative process of program development helps in developing a correct program to solve problems.

 AAP1-D.2 Incrementally add tested program segments to correct working programs to help create larger correct programs.
AAP1-E Algorithms in Programs - Explain how programs implement algorithms.
 AAP1-E.1 Understand that program instructions are executed sequentially.
 AAP1-E.2 Describe how program instructions may involve variables that are initialized and updated, read, and written.
AAP1-F Abstraction in Programs - Use an abstraction to manage complexity in programs. AAP1-F.1 Understand that procedures are reusable programming abstractions.

 AAP1-F.2 Understand that a procedure is a named grouping of programming instructions.

 AAP1-F.3 Use procedures to reduce the complexity of writing and maintaining programs.

 AAP1-F.4 Understand that procedures have names and may have parameters and return values.
 AAP1-F.6 Use parameters to generalize a solution by allowing a procedure to be used instead of duplicated code.

 AAP1-F.7 Understand that parameters provide different values as input to procedures when they are called in a program.

AAP1-G Mathematical and Logic Concepts in Programming - Employ and describe appropriate mathematical and logical concepts in programming.

 AAP1-G.2 Recognize that numbers and numerical concepts are fundamental to programming.

 AAP1-G.4 Understand that mathematical expressions using arithmetic operators are part of most programming languages.

 AAP1-G.5 Understand that logical concepts and Boolean algebra are fundamental to programming.

 AAP1-G.6 Use compound expressions using and, or, and not.

 AAP1-G.7 Use computational methods such as lists and collections to solve problems.

 AAP1-G.9 Understand there are basic operations on collections including adding elements, removing elements, iterating over all elements, and determining whether an element is in a collection.

AAP1-H Describe an abstraction used when writing a program or creating other computational artifacts.

 AAP1-H.1 Create an abstraction that generalizes functionality with input parameters that allow reuse.
 AAP1-H.2 Represent multiple levels of abstractions, such as constants, expressions, statements, procedures, and libraries.

 AAP1-H.3 Describe how an abstraction is used to manage complexity in a specific program.

Computational Tools and Techniques (CTT):

Computing involves the application of collaboration tools, programming tools, mathematical principles, and techniques to manage developments.

CTT1-A Select and apply appropriate computational tools and techniques to solve a problem or create value for others.

 CTT1-A.1 Select tools for collaborating for data collection, writing, or programming.
 CTT1-A.2 Gain understanding of software tools and services while creating computational artifacts.
 CTT1-A.3 Apply computing tools and techniques to create computational artifacts including, but not limited to, programming integrated development environments (IDEs).

CTT1-B Apply a system of version control effectively.
 CTT1-B.1 Maintain successive versions of a digital product during development.
Data (DAT):

Data and information facilitate the creation of knowledge. Managing and interpreting an overwhelming amount of raw data is part of the foundation of our information society and economy.

DAT1-B Describe the variety of abstractions used to represent data.

 DAT1-B.1 Understand that high-level programming languages provide more abstractions for the programmer and make it easier for people to read and write a program.

 DAT1-B.2 Identify what has been made more general by an abstraction and identify what details have been hidden or removed.
 DAT1-B.3 Describe the role of abstraction in handling complexity. (e.g., abstraction in programming languages, procedural abstraction).

 DAT1-B.4 Identify advantages and disadvantages of working at high and low levels of abstraction.

	Unit 2 Lessons

	Lesson Title:
	Timeframe (Periods)
	Knowledge & Skills

	Lesson 2.1 Transitions to Text Based Coding
Block-based programming is a great way to introduce coding fundamentals, but many students want to know, “What is happening inside those blocks?” Lesson 2.1 introduces students to the idea of a lower level of abstraction in a programming language. Students will develop in an environment that allows them to create in blocks, but see that same code in a text-based language.
	16 days
	KS 2.1.1

KS 2.1.2
KS 2.1.3

KS 2.1.4

KS 4.1.1

KS 4.1.2

KS 4.2.1

KS 4.2.2

KS 8.1.1

KS 8.1.2
KS 8.1.3

KS 8.1.4

KS 8.1.5

KS 9.1.5

KS 9.1.6

KS 10.1.2

KS 10.1.4

KS 10.2.1

KS 13.1.2

KS 13.3.6
KS 13.4.1

KS 13.4.2

KS 13.4.3

KS 13.4.4

KS 13.5.1

KS 13.5.2

KS 13.6.1

KS 13.6.2

KS 13.6.3

	Lesson 2.2 Computing Innovations and Careers
Just as clicks of a button or “swipes” of a screen are used to trigger events in an app, today, images are becoming increasingly important as a way to make decisions in programming. In this lesson, students will explore image processing and other innovations that are changing our society. Students will also begin to investigate the wide range of careers in computer science and how computational thinking is an important part of the majority of professions today and in the future.
	19 days
	KS 1.1.2

KS 1.2.2

KS 1.2.3

KS 1.2.4

KS 1.4.1

KS 1.4.2

KS 1.4.3

KS 2.1.2

KS 2.1.3

KS 2.1.4

KS 2.1.5

KS 2.1.6

KS 4.1.2

KS 6.1.1

KS 6.2.1

KS 7.1.2

KS 7.2.3

KS 7.3.2

KS 8.1.1

KS 8.1.2

KS 8.1.3

KS 8.1.4

KS 9.1.1

KS 9.1.2

KS 9.1.3

KS 9.1.4

KS 9.1.5

KS 9.1.6

KS 9.2.1

KS 9.2.4

KS 11.1.1

KS 11.1.2

KS 12.1.1

KS 12.2.2

KS 12.5.1

KS 13.1.1

KS 13.1.2

KS 13.3.1

KS 13.4.2

KS 13.4.4 KS 13.5.1

KS 13.5.2

KS 13.5.3

KS 13.5.4

KS 13.6.2

KS 13.6.3

	Lesson 2.3 Computing in Our World
Tomorrow’s solutions involve all of us. In the final lesson, student groups will learn how to take collaborations to scale to achieve a common goal.

	10 days
	KS 1.4.4
KS 2.1.1

KS 2.1.3

KS 2.1.6

KS 3.1.1 KS 3.1.2

KS 3.1.3

KS 3.1.4

KS 3.1.5

KS 4.1.1
KS 6.2.1

KS 6.2.3

KS 8.1.1
KS 8.1.2

KS 8.1.3

KS 8.1.4

KS 8.1.6

KS 8.1.7

KS 9.2.4

KS 10.1.2

KS 10.1.3

KS 10.1.4

KS 10.3.1

KS 10.3.2

KS 10.3.4

KS 10.3.5

KS 13.1.1

KS 13.1.2

KS 13.5.1

KS 13.5.2

	Activity Timeframes

	Activity Title:
	Timeframe (days)

	Activity 2.1.1 Transitioning from Blocks to Text
	3 days

	Activity 2.1.2 Dead Reckoning!
	3 days

	Activity 2.1.3 Coding Fundamentals: Lists
	3 days

	Activity 2.1.4 Coding Fundamentals: 2D Lists
	3 days

	Project 2.1.5 Map it, Drive it
	4 days

	Activity 2.2.1 Careers, Innovation, and Ethics in Computer Science
	4 days

	Activity 2.2.2 Image Processing: Identification
	4 days

	Activity 2.2.3 Decisions from Images
	4 days

	Project 2.2.4 Image Processing: Navigation and Collision Avoidance
	7 days

	Project 2.3.1 Create Performance Task: Cooperative Driving
	10 days

	CPI #
	Cumulative Progress Indicator (CPI)

	8.2.12.A.1
	Design and create a technology product or system that improves the quality of life and identify trade-offs, risks, and benefits.

	8.2.12.B.1
	Design and create a product that maximizes conservation and sustainability of a scarce resource, using the design process and entrepreneurial skills throughout the design process.

	8.2.12.B.2
	Design and create a prototype for solving a global problem, documenting how the proposed design features affect the feasibility of the prototype through the use of engineering, drawing, and other technical methods of illustration.

	8.2.12.B.3
	Analyze the full costs, benefits, trade-offs, and risks related to the use of technologies in a potential career path.

	8.2.12.C.1
	Analyze the ethical impact of a product, system, or environment, worldwide, and report findings in a web-based publication that elicits further comment and analysis.

	8.2.12.C.2
	Evaluate ethical considerations regarding the sustainability of resources that are used for the design, creation, and maintenance of a chosen product.

	8.2.12.C.3
	Evaluate the positive and negative impacts in a design by providing a digital overview of a chosen product and suggest potential modifications to address the negative impacts.

	8.2.12.E.1
	Use the design process to devise a technological product or system that addresses a global issue, and provide documentation through drawings, data, and materials, taking the relevant cultural perspectives into account throughout the design and development process.

	8.2.12.F.1
	Determine and use the appropriate application of resources in the design, development, and creation of a technological product or system.

	8.2.12.F.2
	Explain how material science impacts the quality of products.

	8.2.12.F.3
	Select and utilize resources that have been modified by digital tools (e.g., CNC equipment, CAD software) in the creation of a technological product or system.

	8.2.12.G.1
	Analyze the interactions among various technologies and collaborate to create a product or system demonstrating their interactivity.

	Evidence of Learning

	Formative Assessments:

1. Daily question and response as we go along in the topic, CSE notebook
2. Students will be asked to provide examples of certain ideas, or to apply ideas to samples of their own choosing.

3. Student work will be assessed according to the PLTW rubrics

4. Students programming skills
5. Peer review ability

6. Ability to work together with other students

	Summative Assessment:

1. Map it, Drive it project
2. Students will be graded on their programming set up and different criteria deadlines.

3. Image Processing: Navigation and Collision Avoidance project.
4. Cooperative Driving project

	Additional Materials

	Digital Tools & Resources :
• Microsoft Office (Excel, Word, PowerPoint)

• MIT App Inventor
• Python, web based (trinket.io)

• Google Access

• Android or Apple Device/tablet
• VEXCode VR

• VEX SDV

	Primary & Secondary Resources
• PLTW student website
• PLTW resource package

	Unit 3 Overview

	Content Area: Computer Science Essentials - Project Lead the Way

	Unit Title: Unit 3 : Solving with Syntax – 55 Days

	Target Course/Grade Levels: Computer Science Essentials - Project Lead The Way / 9-12

	Unit Summary: The goal of Unit 3 is for students to begin to understand and use the flexibility and power of programming in a text-based environment. Students will be introduced to the Python® programming language in the Cloud9 development environment. In this unit, students will continue to build on coding fundamentals as they apply the same coding concepts, computational thinking practices, and development processes introduced in units 1 and 2.

Essential Questions
1. How am I applying independent, cooperative, and collaborative strategies to find my own answers?

2. Why is computer science considered a form of art and creative expression?

3. What are some essential operations you do over and over with lists or collections?

4. How does parameterization generalize a specific solution?

5. Why is it important to become a creator of apps and not just a user?
21st-Century Life & Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

	Learning Targets

	Standards: 8.2 Technology Education, Engineering, and Design All students will develop an understanding of the nature and impact of technology, engineering, technological design, and the designed world, as they relate to the individual, global society, and the environment.

	Content Statements:
A. Nature of Technology: Creativity and Innovation: Technology products and systems impact every aspect of the world in which we live.
B. Design: Critical Thinking, Problem Solving, and Decision-Making: The design process is a systematic approach to solving problems.
C. Technological Citizenship, Ethics, and Society : Knowledge and understanding of human, cultural, and societal values are fundamental when designing technology systems and products in the global society
D. Communication and Collaboration: Digital tools facilitate local and global communication and collaboration in designing products and systems.
E. Resources for a Technological World: Technological products and systems are created through the application and appropriate use of technological resources.
F. The Designed World: The designed world is the product of a design process that provides the means to convert resources into products and systems.

	Goals:

· Get started with Python®.
· Apply coding fundamentals in a text-based language.

· Apply file naming conventions and version control.

· Apply coding fundamentals in a text-based language

· Develop and test code incrementally

· Develop a program independently

· Learn to create, manipulate, and access lists in Python®
· Pair program to develop a program that solves a problem and generates understanding

· Decompose a project into smaller parts

· Apply coding fundamentals and iterative processes

· Create a program that would be useful to you in another class

	Students will be able exhibit the following professional skills:

• Team collaboration

• Project management

• Problem-solving

• Communication skills

• Presentation skills

• Technical writing

• Ethical practice
• Global perspective

	Students will be able show understanding of the following concepts:

• Careers in Computer Science
• Computer Science disciplines

• STEM careers related to course content

• Professional ethics

• Design Process

• MIT App Inventor

• APIs

• Block Programming

• Abstraction

• Event handlers

• Event-driven programming
• Variables

• Code execution

• Debugging

• Procedures and arguments

• Iteration
• Classes and Objects

• Data and Information

• Tracer Bullet Development

• Modeling and Simulation

• Decomposition and Agile

• User-centered Design

• Computational Thinking

• Data Types and Logic
• Loops and iterations in loops
• Lists

• Nested conditionals

• Different user clicks
• Precision and Accuracy
• Algorithms

• Strings and Concatenation

• Arithmetic Operators, Relational Operators, and Logical Operators

• Physical modeling and prototyping

• Pattern recognition

• Broadcasting

	Unit 3 Framework

	 Transportable Knowledge and Skills
Core workplace skills that students and workers need to acquire, that can be used across all stages of a career, and that, because of their universal utility, are transportable from job to job, from employer to employer, across the economy.

Collaboration (COL):

Diverse perspectives, good interpersonal relationships, and effective collaboration strategies generate the most robust and innovative solutions.

COL1-A Collaborate when processing information to gain insight and knowledge.

 COL1-A.1 Understand that collaboration is an important part of solving data- driven problems.

 COL1-A.3 Understand that communication between participants working on data- driven problems gives rise to enhanced insights and knowledge.

 COL1-A.4 Understand that collaborating face-to-face and using online collaborative tools can facilitate processing information to gain insight and knowledge.

COL1-B Collaborate to develop a program.

 COL1-B.3 Understand that collaboration in the iterative development of a program requires different skills than developing a program alone.

 COL1-B.4 Understand that collaboration can make it easier to find and correct errors when developing programs.

Ethical Reasoning and Mindset (ERM):

Computing professionals must make decisions regularly regarding their professional and social conduct when collaborating with developers and engaging with users to get feedback.

ERM1-A Abide by professional standards when creating value for people and society.

 ERM1-A.1 Create and maintain a secure professional identity for accessing IDEs and accessing computer science communities.

ERM1-B Access, manage, and attribute information using effective strategies.

 ERM1-B.1 Understand that online databases and libraries catalog and house secondary and some primary sources.

 ERM1-B.2 Understand that plagiarism is a serious offense that occurs when a person presents another’s ideas or words as his or her own. Plagiarism may be avoided by accurately acknowledging sources.

ERM1-D Evaluate online and print sources for appropriateness and credibility.

 ERM1-D.1 Evaluate the credibility of a source by considering reputation and credentials of the author(s), publisher(s), site owner(s), and/or sponsor(s).

 ERM1-D.2 Evaluate the relevancy of information from a source and if it supports an appropriate claim or the purpose of the investigation.

Critical and Creative Problem-Solving (CCP):

Computing is a creative activity. Creativity and computing are prominent forces in innovation; the innovations enabled by computing have had and will continue to have far-reaching impact.

CCP1-A Apply a creative development process when creating computational artifacts.

 CCP1-A.1 Translate ideas into tangible form by creating computational artifacts and employing an iterative and exploratory process.

CCP1-C Describe moments within a process where curiosity, persistence, and the positive aspect of failure played an important role in gaining understanding about a problem or unexpected observation.

 CCP1-C.1 Describe difficulties and/or opportunities you encountered and how they were resolved or incorporated.

CCP1-D Engage stakeholders in a problem and use their perspectives to shape the course of your development.

CCP1-D.1 Identifying programmer and user concerns that affect the solution to problems.

CCP1-E Apply and describe an iterative process based on user-centered research to solve a problem.

CCP1-E.1 Apply and describe an iterative process used during the development of a solution.

CCP1-E.2 Use user-centered research and design techniques to create software solutions.

CCP1-F Identify and apply decomposition as a critical step in problem solving.

CCP1-F.1 Deconstruct a complex project or problem into smaller discrete modules that can be developed independently, then incorporated together at a later time.

CCP1-F.2 Deconstruct a complex problem into simpler parts using predefined constructs (e.g., functions and parameters and/or classes).

CCP1-G Explain how people participate in a problem-solving process that scales.

CCP1-G.1 Describe how human capabilities are enhanced by digitally enabled collaboration.

Technical Knowledge and Skills
Every career field requires technical literacy and career-specific knowledge and skills to support professional practice.

Algorithms and Programming (AAP):

Algorithms are used to develop and express solutions to computational problems. Algorithms are fundamental to even the most basic everyday task.

Programming enables problem solving, human expression, and creation of knowledge. Any particular programming language is selected based on appropriateness for a specific project or problem.

People use computer programs to process information to gain insight and knowledge.

AAP1-A Develop an algorithm for implementation in a program.

 AAP1-A.1 Understand that sequencing, selection, and iteration are building blocks of algorithms.

 AAP1-A.2 Understand that sequencing is the application of each step of an algorithm in the order in which the statements are given.

 AAP1-A.3 Use a Boolean condition or selection to determine which of two parts of an algorithm are used.

 AAP1-A.4 Use Iteration or repetition of a part of an algorithm until a condition is met or until a specified number of times have been completed.

 AAP1-A.8 Implement and analyze common patterns employing variables and iteration, including “for” loops iterating across a list, value accumulation, and list aggregation.

AAP1-B Express an algorithm in a language.

 AAP1-B.2 Write in natural language and pseudocode to describe algorithms so that humans can understand them.

AAP1-D Iteration in Programming - Create programs by writing and testing code in a modular, incremental approach.

 AAP1-D.1 Describe how an iterative process of program development helps in developing a correct program to solve problems.

 AAP1-D.2 Incrementally add tested program segments to correct working programs to help create larger correct programs.

 AAP1-D.3 Adapt or improve existing code.

AAP1-E Algorithms in Programs - Explain how programs implement algorithms.

 AAP1-E.1 Understand that program instructions are executed sequentially.

 AAP1-E.2 Describe how program instructions may involve variables that are initialized and updated, read, and written.

AAP1-F Abstraction in Programs - Use an abstraction to manage complexity in programs.

 AAP1-F.1 Understand that procedures are reusable programming abstractions.

 AAP1-F.2 Understand that a procedure is a named grouping of programming instructions.

 AAP1-F.3 Use procedures to reduce the complexity of writing and maintaining programs.

 AAP1-F.4 Understand that procedures have names and may have parameters and return values.

 AAP1-F.6 Use parameters to generalize a solution by allowing a procedure to be used instead of duplicated code.

 AAP1-F.7 Understand that parameters provide different values as input to procedures when they are called in a program.

AAP1-G Mathematical and Logic Concepts in Programming - Employ and describe appropriate mathematical and logical concepts in programming.

 AAP1-G.1 Understand that strings and string operations, including concatenation and some form of substring, are common in many programs.

 AAP1-G.4 Understand that mathematical expressions using arithmetic operators are part of most programming languages.

 AAP1-G.5 Understand that logical concepts and Boolean algebra are fundamental to programming.

 AAP1-G.7 Use computational methods such as lists and collections to solve problems.

 AAP1-G.9 Understand there are basic operations on collections including adding elements, removing elements, iterating over all elements, and determining whether an element is in a collection.

AAP1-H Describe an abstraction used when writing a program or creating other computational artifacts.

 AAP1-H.1 Create an abstraction that generalizes functionality with input parameters that allow reuse.

 AAP1-H.3 Describe how an abstraction is used to manage complexity in a specific program.
AAP1-I Use models and simulations to represent phenomena.
 AAP1-I.1 Understand that models and simulations are simplified representations of more complex objects or phenomena.

 AAP1-I.2 Understand that models may use different abstractions or levels of abstraction depending on the objects or phenomena being posed.

 AAP1-I.3 Understand that simulations mimic real-world events without the cost or danger of building and testing the phenomena in the real world.

Computational Tools and Techniques (CTT):

Computing involves the application of collaboration tools, programming tools, mathematical principles, and techniques to manage developments.

CTT1-A Select and apply appropriate computational tools and techniques to solve a problem or create value for others.

 CTT1-A.1 Select tools for collaborating for data collection, writing, or programming.

 CTT1-A.2 Gain understanding of software tools and services while creating computational artifacts.
 CTT1-A.3 Apply computing tools and techniques to create computational artifacts including, but not limited to, programming integrated development environments (IDEs).
 CTT1-A.4 Navigate and use unfamiliar documentation and public information to extend the student's own knowledge of a programming language or to achieve a computational approach to solve a problem.

Data (DAT):
Data and information facilitate the creation of knowledge. Managing and interpreting an overwhelming amount of raw data is part of the foundation of our information society and economy.

DAT1-B Describe the variety of abstractions used to represent data.

 DAT1-B.2 Identify what has been made more general by an abstraction and identify what details have been hidden or removed.

 DAT1-B.3 Describe the role of abstraction in handling complexity. (e.g., abstraction in programming languages, procedural abstraction).

	Unit 3 Lessons

	Lesson Title:
	Timeframe (Periods)
	Knowledge & Skills

	Lesson 3.1 Text-based Coding
In this lesson, students will reinforce previously learned concepts as they are introduced to the power of programming in a text-based language. The goal of this lesson is for students to become comfortable implementing algorithms using conditionals and loops in Python.

	9 days
	KS 1.1.1
KS 1.1.2

KS 1.2.1
KS 1.4.1
KS 1.4.2

KS 1.4.3

KS 1.4.4

KS 2.1.1
KS 2.1.2

KS 2.1.3
KS 2.1.4

KS 2.1.5

KS 2.1.6

KS 4.2.2

KS 5.1.1

KS 6.1.1

KS 6.1.2

KS 6.2.1

KS 6.2.2

KS 6.2.3

KS 6.2.4

KS 7.1.2

KS 7.1.3

KS 7.2.1

KS 7.2.2

KS 7.2.3

KS 7.3.1

KS 7.3.2

KS 8.1.1

KS 8.1.2

KS 8.1.3

KS 8.1.4

KS 8.1.5

KS 8.1.6

KS 8.1.7

KS 9.1.1
KS 9.1.2

KS 9.1.3

KS 9.1.4

KS 9.2.4

KS 10.1.1 KS 10.3.1

KS 10.3.2

KS 10.3.4

KS 10.3.5

KS 11.1.2

KS 11.1.3

KS 11.2.1

KS 12.2.2 KS 13.1.1

KS 13.1.2

KS 13.3.3

KS 13.2.5

KS 13.6.2

	Lesson 3.2 Text-based Solutions
In this lesson, students will continue to explore the use of text-based programming. The lesson ends with students creating a game simulation that allows them to make generalizations and develop functions that attempt to detect and react to another team’s strategy.

	30 days
	KS 1.1.3
KS 1.2.1
KS 1.2.2
KS 1.4.1
KS 1.4.2

KS 1.4.3

KS 1.4.4

KS 2.1.1

KS 2.1.2

KS 2.1.3

KS 2.1.4

KS 2.1.5

KS 2.1.6

KS 2.1.7

KS 3.1.1

KS 3.2.3

KS 3.2.4

KS 4.1.1

KS 6.1.1

KS 6.1.2

KS 6.2.1

KS 6.2.2

KS 6.2.3

KS 6.2.4

KS 7.1.3

KS 7.2.2

KS 7.2.4

KS 8.1.1

KS 8.1.2

KS 8.1.3

KS 8.1.4

KS 8.1.5

KS 8.1.6

KS 8.1.7

KS 9.1.3

KS 9.2.2
KS 9.2.3

KS 9.2.4

KS 10.3.2

KS 10.3.5

KS 11.1.1

KS 11.1.3

KS 11.2.1

KS 12.1.1

KS 12.2.2

KS 12.4.1

KS 12.4.2

KS 13.1.2

KS 13.2.1

KS 13.2.5

KS 13.5.1

KS 13.5.2

KS 13.5.4

	Lesson 3.3 Solve a Problem
In the final unit of this lesson, students will work with a team to create a program that automates the solution of a problem from one of their other classes.

	16 days
	KS 1.1.2
KS 1.1.3

KS 1.2.1

KS 1.2.2

KS 1.2.4

KS 1.3.1

KS 1.3.2

KS 1.4.2

KS 1.4.4

KS 2.1.4

KS 2.1.5

KS 3.2.4

KS 4.2.2
KS 5.1.1

KS 5.1.2

KS 5.1.3

KS 6.1.1

KS 6.1.2

KS 6.2.2

KS 6.2.3

KS 7.1.1
KS 7.1.2

KS 7.1.3

KS 7.2.1
KS 7.2.2
KS 7.3.2

KS 8.1.1

KS 8.1.5

KS 8.1.6

KS 9.1.3

KS 10.1.1

KS 10.1.2
KS 10.1.3

KS 10.1.4

KS 10.3.4
KS 11.1.1

KS 11.1.3

KS 11.2.1

KS 12.1.1

KS 12.2.1
KS 12.2.2

KS 12.5.1

KS 13.1.2

KS 13.2.1

KS 13.5.1

KS 13.5.2

KS 13.6.1
KS 13.6.2

	Activity Timeframes

	Activity Title:
	Timeframe (days)

	Activity 3.1.1 Python Programming on Cloud9
	1 day

	Activity 3.1.2 Variables and Conditionals
	2 days

	Project 3.1.3 Combo Menu
	6 days

	Activity 3.2.1 Lists and Elements
	4 days

	Activity 3.2.2 Social Media: Posting Objects
	6 days

	Activity 3.2.3 Iteration and Counts
	5 days

	Activity 3.2.4 Course Registration
	7 days

	Project 3.2.5 Artificial Intelligence: Rock, Paper, Scissors Simulation
	8 days

	Problem 3.3.1 From Paper to Programming
	16 days

	CPI #
	Cumulative Progress Indicator (CPI)

	8.2.12.A.1
	Design and create a technology product or system that improves the quality of life and identify trade-offs, risks, and benefits.

	8.2.12.B.1
	Design and create a product that maximizes conservation and sustainability of a scarce resource, using the design process and entrepreneurial skills throughout the design process.

	8.2.12.B.2
	Design and create a prototype for solving a global problem, documenting how the proposed design features affect the feasibility of the prototype through the use of engineering, drawing, and other technical methods of illustration.

	8.2.12.B.3
	Analyze the full costs, benefits, trade-offs, and risks related to the use of technologies in a potential career path.

	8.2.12.C.1
	Analyze the ethical impact of a product, system, or environment, worldwide, and report findings in a web-based publication that elicits further comment and analysis.

	8.2.12.C.2
	Evaluate ethical considerations regarding the sustainability of resources that are used for the design, creation, and maintenance of a chosen product.

	8.2.12.C.3
	Evaluate the positive and negative impacts in a design by providing a digital overview of a chosen product and suggest potential modifications to address the negative impacts.

	8.2.12.E.1
	Use the design process to devise a technological product or system that addresses a global issue, and provide documentation through drawings, data, and materials, taking the relevant cultural perspectives into account throughout the design and development process.

	8.2.12.F.1
	Determine and use the appropriate application of resources in the design, development, and creation of a technological product or system.

	8.2.12.F.2
	Explain how material science impacts the quality of products.

	8.2.12.F.3
	Select and utilize resources that have been modified by digital tools (e.g., CNC equipment, CAD software) in the creation of a technological product or system.

	8.2.12.G.1
	Analyze the interactions among various technologies and collaborate to create a product or system demonstrating their interactivity.

	Evidence of Learning

	Formative Assessments:
1. Daily question and response as we go along in the topic, CSE notebook
2. Students will be asked to provide examples of certain ideas, or to apply ideas to samples of their own choosing.

3. Student work will be assessed according to the PLTW rubrics

4. Students programming skills

5. Peer review ability

6. Ability to work together with other students

	Summative Assessment:

1. Combo Menu project.

2. AI: Rock, Paper, Scissors Simulation
3. From Paper to Programming.
4. Students will be graded on their programming set up and different criteria deadlines.

	Additional Materials

	Digital Tools & Resources :
• Microsoft Office (Excel, Word, PowerPoint)

• MIT App Inventor
• Python, web based (trinket.io)

• Google Access

• Android or Apple Device/tablet

• VEXCode VR

• VEX SDV

	Primary & Secondary Resources
• PLTW student website

• PLTW resource package

	Unit 4 Overview

	Content Area: Computer Science Essentials - Project Lead the Way

	Unit Title: Unit 4 : Computing with a Purpose – 35 Days

	Target Course/Grade Levels: Computer Science Essentials - Project Lead The Way / 9-12

	Unit Summary: The final unit in CSE allows students to apply all that they have learned in a student-defined, student-driven development. Whether creating an app, a website, or a physical computing device, students will apply computational thinking practices and a strategic development process to create computational artifacts that solve problems and create value for others. Students will collaborate the way computing professionals do as they pursue solutions to authentic needs. For those students continuing to PLTW CSP, this unit provides an excellent model of how to participate in, document, and create a performance task for AP CSP.

Essential Questions
1. How do I describe an algorithm to someone new to computer science?
2. How do abstractions manage complexity in a program?

21st-Century Life & Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

	Learning Targets

	Standards: 8.2 Technology Education, Engineering, and Design All students will develop an understanding of the nature and impact of technology, engineering, technological design, and the designed world, as they relate to the individual, global society, and the environment.

	Content Statements:
A. Nature of Technology: Creativity and Innovation: Technology products and systems impact every aspect of the world in which we live.
B. Design: Critical Thinking, Problem Solving, and Decision-Making: The design process is a systematic approach to solving problems.
C. Technological Citizenship, Ethics, and Society : Knowledge and understanding of human, cultural, and societal values are fundamental when designing technology systems and products in the global society
D. Communication and Collaboration: Digital tools facilitate local and global communication and collaboration in designing products and systems.
E. Resources for a Technological World: Technological products and systems are created through the application and appropriate use of technological resources.
F. The Designed World: The designed world is the product of a design process that provides the means to convert resources into products and systems.

	Goals:
· Apply what you have learned to a topic that is important to you.

	Students will be able exhibit the following professional skills:

• Team collaboration

• Project management

• Problem-solving

• Communication skills

• Presentation skills

• Technical writing

• Ethical practice
• Global perspective

	Students will be able show understanding of the following concepts:
• Investigate an Idea

• Plan

• Design
• Test and Create

• Evaluate the Solution

• Document and Present

• Careers in Computer Science
• Computer Science disciplines

• STEM careers related to course content

• Professional ethics

• Design Process

• MIT App Inventor

• APIs

• Block Programming

• Abstraction

• Event handlers

• Event-driven programming
• Variables

• Code execution

• Debugging

• Procedures and arguments

• Iteration
• Classes and Objects

• Data and Information

• Tracer Bullet Development

• Modeling and Simulation

• Decomposition and Agile

• User-centered Design

• Computational Thinking

• Data Types and Logic
• Loops and iterations in loops
• Lists

• Nested conditionals

• Different user clicks
• Precision and Accuracy
• Algorithms

• Strings and Concatenation

• Arithmetic Operators, Relational Operators, and Logical Operators

• Physical modeling and prototyping

• Pattern recognition

• Broadcasting

	Unit 4 Framework

	 Transportable Knowledge and Skills
Core workplace skills that students and workers need to acquire, that can be used across all stages of a career, and that, because of their universal utility, are transportable from job to job, from employer to employer, across the economy.

Communication (COM):

Computing professionals must be able to explain and justify the design and appropriateness of their computational choices, and analyze and describe both computational artifacts and the results or behaviors of such artifacts.

COM1-A Communicate ideas, processes, and products to optimize audience perception and understanding.

 COM1-A.1 Create program documentation that helps programmers develop and maintain correct programs to efficiently solve problems.

 COM1-A.2 Create documentation about program components, such as code segments and procedures, that helps in developing and maintaining programs.

 COM1-A.3 Create documentation that helps in developing and maintaining programs when working individually or in collaborative programming environments.

 COM1-A.4 Summarize the purpose of a computational artifact.

 COM1-A.5 Communicate which portions of a program you developed independently and which were created collaboratively.

Collaboration (COL):

Diverse perspectives, good interpersonal relationships, and effective collaboration strategies generate the most robust and innovative solutions.

COL1-A Collaborate when processing information to gain insight and knowledge.

 COL1-A.2 Understand that collaboration facilitates solving computational problems by applying multiple perspectives, experiences, and skill sets.

COL1-B Collaborate to develop a program.

 COL1-B.1 Understand that collaboration can decrease the size and complexity of tasks required of individual programmers.

 COL1-B.2 Understand that collaboration facilitates multiple perspectives in developing ideas for solving problems by programming.

 COL1-B.3 Understand that collaboration in the iterative development of a program requires different skills than developing a program alone.

 COL1-B.4 Understand that collaboration can make it easier to find and correct errors when developing programs.

 COL1-B.5 Understand that collaboration facilitates developing program components independently.

COL1-C Apply project management strategies effectively as part of a team.

 COL1-C.1 Prioritize short-term and long-term objectives using an Agile methodology when working on a project.

 COL1-C.2 Select and use computational tools that enable collaboration.

 COL1-C.3 Work with a group to establish team norms.

 COL1-C.4 Establish clear responsibilities and split workloads equitably.

Ethical Reasoning and Mindset (ERM):

Computing professionals must make decisions regularly regarding their professional and social conduct when collaborating with developers and engaging with users to get feedback.

ERM1-A Abide by professional standards when creating value for people and society.

 ERM1-A.3 Engage others with respect and forethought.

ERM1-B Access, manage, and attribute information using effective strategies.

ERM1-B.1 Understand that online databases and libraries catalog and house secondary and some primary sources.

ERM1-B.2 Understand that plagiarism is a serious offense that occurs when a person presents another’s ideas or words as his or her own. Plagiarism may be avoided by accurately acknowledging sources.

ERM1-C Consider accessibility and equity when designing products, creating solutions, and collaborating with others.

ERM1-C.1 Explain how diversity on development teams is essential for producing outcomes that serve a diverse audience.

ERM1-D Evaluate online and print sources for appropriateness and credibility.

ERM1-D.1 Evaluate the credibility of a source by considering reputation and credentials of the author(s), publisher(s), site owner(s), and/or sponsor(s).
ERM1-D.2 Evaluate the relevancy of information from a source and if it supports an appropriate claim or the purpose of the investigation.

Critical and Creative Problem-Solving (CCP):

Computing is a creative activity. Creativity and computing are prominent forces in innovation; the innovations enabled by computing have had and will continue to have far-reaching impact.

CCP1-A Apply a creative development process when creating computational artifacts.

CCP1-A.1 Translate ideas into tangible form by creating computational artifacts and employing an iterative and exploratory process.

CCP1-B Create a computational artifact for creative expression.

CCP1-B.1 Identify a computational artifact as something created by a human using a computer and differentiate between a program, an image, an audio, a video, a presentation, or a web page file.
CCP1-B.2 Discuss how creativity, collaboration, and curiosity can lead to innovation.

CCP1-C Describe moments within a process where curiosity, persistence, and the positive aspect of failure played an important role in gaining understanding about a problem or unexpected observation.

CCP1-C.1 Describe difficulties and/or opportunities you encountered and how they were resolved or incorporated.

CCP1-D Engage stakeholders in a problem and use their perspectives to shape the course of your development.

CCP1-D.1 Identifying programmer and user concerns that affect the solution to problems.

CCP1-D.2 Consult and communicate with program users in program development to solve problems.

CCP1-E Apply and describe an iterative process based on user-centered research to solve a problem.

 CCP1-E.1 Apply and describe an iterative process used during the development of a solution.
 CCP1-E.2 Use user-centered research and design techniques to create software solutions.

CCP1-F Identify and apply decomposition as a critical step in problem solving.

 CCP1-F.1 Deconstruct a complex project or problem into smaller discrete modules that can be developed independently, then incorporated together at a later time.

 CCP1-F.2 Deconstruct a complex problem into simpler parts using predefined constructs (e.g., functions and parameters and/or classes).

Technical Knowledge and Skills
Every career field requires technical literacy and career-specific knowledge and skills to support professional practice.

Algorithms and Programming (AAP):

Algorithms are used to develop and express solutions to computational problems. Algorithms are fundamental to even the most basic everyday task.

Programming enables problem solving, human expression, and creation of knowledge. Any particular programming language is selected based on appropriateness for a specific project or problem.

People use computer programs to process information to gain insight and knowledge.

AAP1-A Develop an algorithm for implementation in a program.

 AAP1-A.1 Understand that sequencing, selection, and iteration are building blocks of algorithms.

 AAP1-A.2 Understand that sequencing is the application of each step of an algorithm in the order in which the statements are given.

 AAP1-A.3 Use a Boolean condition or selection to determine which of two parts of an algorithm are used.

 AAP1-A.5 Combine algorithms to make new algorithms and explain how they function both independently and together.

 AAP1-A.6 Use existing correct algorithms as building blocks for constructing a new algorithm to help ensure the new algorithm is correct.

 AAP1-B Express an algorithm in a language.

 AAP1-B.2 Write in natural language and pseudocode to describe algorithms so that humans can understand them.

AAP1-C Creative Expression in Programming - Develop a program for creative expression, to satisfy personal curiosity, or to create new knowledge.

 AAP1-C.1 Develop programs used in a variety of ways by a wide range of people.

 AAP1-C.2 Understand that programs developed for creative expression, to satisfy personal curiosity, or to create new knowledge may have visual, audible, or tactile inputs and outputs.
AAP1-D Iteration in Programming - Create programs by writing and testing code in a modular,

incremental approach.

 AAP1-D.1 Describe how an iterative process of program development helps in developing a correct program to solve problems.
 AAP1-D.2 Incrementally add tested program segments to correct working programs to help create larger correct programs.

AAP1-H Describe an abstraction used when writing a program or creating other computational artifacts.

 AAP1-H.3 Describe how an abstraction is used to manage complexity in a specific program.

Computational Tools and Techniques (CTT):

Computing involves the application of collaboration tools, programming tools, mathematical principles, and techniques to manage developments.

CTT1-A Select and apply appropriate computational tools and techniques to solve a problem or create value for others.

 CTT1-A.1 Select tools for collaborating for data collection, writing, or programming.
 CTT1-A.2 Gain understanding of software tools and services while creating computational artifacts.

 CTT1-A.3 Apply computing tools and techniques to create computational artifacts including, but not limited to, programming integrated development environments (IDEs).

 CTT1-A.4 Navigate and use unfamiliar documentation and public information to extend the student's own knowledge of a programming language or to achieve a computational approach to solve a problem.

CTT1-B Apply a system of version control effectively.

 CTT1-B.1 Maintain successive versions of a digital product during development.

Data (DAT):

Data and information facilitate the creation of knowledge. Managing and interpreting an overwhelming amount of raw data is part of the foundation of our information society and economy.

DAT1-B Describe the variety of abstractions used to represent data.

 DAT1-B.2 Identify what has been made more general by an abstraction and identify what details have been hidden or removed.
 DAT1-B.3 Describe the role of abstraction in handling complexity. (e.g., abstraction in programming languages, procedural abstraction).

	Unit 4 Lessons

	Lesson Title:
	Timeframe (Periods)
	Knowledge & Skills

	Lesson 4.1 Innovation of Computational Problem Solving
The goal of this lesson is to allow students the opportunity to apply the collaboration, technical, and communication skills that they have developed to solve an authentic problem that is relevant to them.

	35 days
	KS 1.1.2

KS 1.2.1
KS 1.2.2
KS 1.4.2

KS 2.1.3

KS 2.1.4

KS 2.1.5

KS 2.1.6

KS 2.1.7

KS 3.1.1

KS 3.1.2

KS 3.2.1

KS 3.2.4
KS 7.1.3

KS 7.2.2

KS 7.2.3

KS 7.3.2

KS 8.1.2

KS 8.1.3

KS 8.1.5

KS 8.1.6

KS 9.1.2

KS 9.1.3

KS 9.1.4

KS 10.1.1

KS 10.1.4
KS 10.3.5

KS 10.4.1

KS 10.4.2

KS 10.4.3

KS 10.4.4

KS 11.1.1

KS 11.1.2

KS 12.1.1

KS 12.4.1

KS 12.4.2

KS 13.1.2

KS 13.2.1

KS 13.2.2

KS 13.2.3 KS 13.2.4

KS 13.2.5 KS 13.3.2

KS 13.3.4

KS 13.4.2

KS 13.4.4

KS 13.5.1

KS 13.5.2

KS 13.5.3

KS 13.5.4

KS 13.6.1

	Activity Timeframes

	Activity Title:
	Timeframe (days)

	Activity 4.1.1 Create Performance Task: Your Development Process
	

	Part A Find an Idea to Pursue
	4 days

	Part B Set Your Development Milestones
	1 day

	Part C Prepare, Investigate, and Plan
	3 days

	Part D Design, Create, and Test
	15 days

	Part E Evaluate and Reflect
	7 days

	Part F Present
	5 days

	CPI #
	Cumulative Progress Indicator (CPI)

	8.2.12.A.1
	Design and create a technology product or system that improves the quality of life and identify trade-offs, risks, and benefits.

	8.2.12.B.1
	Design and create a product that maximizes conservation and sustainability of a scarce resource, using the design process and entrepreneurial skills throughout the design process.

	8.2.12.B.2
	Design and create a prototype for solving a global problem, documenting how the proposed design features affect the feasibility of the prototype through the use of engineering, drawing, and other technical methods of illustration.

	8.2.12.B.3
	Analyze the full costs, benefits, trade-offs, and risks related to the use of technologies in a potential career path.

	8.2.12.C.1
	Analyze the ethical impact of a product, system, or environment, worldwide, and report findings in a web-based publication that elicits further comment and analysis.

	8.2.12.C.2
	Evaluate ethical considerations regarding the sustainability of resources that are used for the design, creation, and maintenance of a chosen product.

	8.2.12.C.3
	Evaluate the positive and negative impacts in a design by providing a digital overview of a chosen product and suggest potential modifications to address the negative impacts.

	8.2.12.E.1
	Use the design process to devise a technological product or system that addresses a global issue, and provide documentation through drawings, data, and materials, taking the relevant cultural perspectives into account throughout the design and development process.

	8.2.12.F.1
	Determine and use the appropriate application of resources in the design, development, and creation of a technological product or system.

	8.2.12.F.2
	Explain how material science impacts the quality of products.

	8.2.12.F.3
	Select and utilize resources that have been modified by digital tools (e.g., CNC equipment, CAD software) in the creation of a technological product or system.

	8.2.12.G.1
	Analyze the interactions among various technologies and collaborate to create a product or system demonstrating their interactivity.

	Evidence of Learning

	Formative Assessments:

1. Daily question and response as we go along in the topic, CSE notebook
2. Students will be asked to provide examples of certain ideas, or to apply ideas to samples of their own choosing.

3. Student work will be assessed according to the PLTW rubrics

4. Students programming skills

5. Peer review ability

6. Ability to work together with other students

	Summative Assessment:

1. Create Performance Task(broken into parts)

	Additional Materials

	Digital Tools & Resources :
• Microsoft Office (Excel, Word, PowerPoint)

• MIT App Inventor
• Python, web based (trinket.io)

• Google Access

• Android or Apple Device/tablet

• VEXCode VR

• VEX SDV

	Primary & Secondary Resources
• PLTW student website

• PLTW resource package

	Modifications/Differentiation of Instruction

	Differentiation Strategies for Special Education Students

· Remove unnecessary material, words, etc., that can distract from the content

· Use of off-grade level materials

· Provide appropriate scaffolding

· Limit the number of steps required for completion

· Time allowed

· Level of independence required

· Tiered centers, assignments, lessons, or products

· Provide appropriate leveled reading materials

· Deliver the content in “chunks”

· Varied texts and supplementary materials

· Use technology, if available and appropriate

· Varied homework and products

· Varied questioning strategies

· Provide background knowledge

· Define key vocabulary, multiple-meaning words, and figurative language.

· Use audio and visual supports, if available and appropriate

· Provide multiple learning opportunities to reinforce key concepts and vocabulary

· Meet with small groups to reteach idea/skill

· Provide cross-content application of concepts

· Ability to work at their own pace

· Present ideas using auditory, visual, kinesthetic, & tactile means

· Provide graphic organizers and/or highlighted materials

· Strategy and flexible groups based on formative assessment

· Differentiated checklists and rubrics, if available and appropriate

Differentiation Strategies for Gifted and Talented Students

· Increase the level of complexity

· Decrease scaffolding

· Variety of finished products

· Allow for greater independence

· Learning stations, interest groups

· Varied texts and supplementary materials

· Use of technology

· Flexibility in assignments

· Varied questioning strategies

· Encourage research

· Strategy and flexible groups based on formative assessment or student choice

· Acceleration within a unit of study

· Exposure to more advanced or complex concepts, abstractions, and materials

· Encourage students to move through content areas at their own pace

· After mastery of a unit, provide students with more advanced learning activities, not more of the same activity

· Present information using a thematic, broad-based, and integrative content, rather than just single-subject areas

Differentiated Strategies for ELL Students

· Remove unnecessary materials, words, etc., that can distract from the content

· Provide appropriate scaffolding

· Limit the number of steps required for completion

· Gradually increase the level of independence required

· Tiered centers, assignments, lessons, or products

· Provide appropriate leveled reading materials

· Deliver the content in “chunks”

· Varied texts and supplementary materials, including visuals

· Use technology, if available and appropriate

· Differentiate homework and products

· Varied questioning strategies

· Provide background knowledge

· Define key vocabulary, multiple-meaning words, and figurative language.

· Use audio and visual supports, if available and appropriate

· Provide multiple learning opportunities to reinforce key concepts and vocabulary

· Meet with small groups to reteach idea/skill

· Provide cross-content application of concepts

· Allow students to work at their own pace

· Presenting ideas through auditory, visual, kinesthetic, & tactile means

· Role play

· Provide graphic organizers, highlighted materials

· Strategy and flexible groups based on formative assessment

Differentiation Strategies for At Risk Students

· Remove unnecessary materials, words, etc., that can distract from the content

· Provide appropriate scaffolding

· Limit the number of steps required for completion

· Gradually increase the level of independence required

· Tiered centers, assignments, lessons, or products

· Provide appropriate leveled reading materials

· Deliver the content in “chunks”

· Varied texts and supplementary materials

· Use technology, if available and appropriate

· Differentiate homework and products

· Varied questioning strategies

· Provide background knowledge

· Define key vocabulary, multiple-meaning words, and figurative language

· Use audio and visual supports, if available and appropriate

· Provide multiple learning opportunities to reinforce key concepts and vocabulary

· Meet with small groups to reteach idea/skill

· Provide cross-content application of concepts

· Presenting ideas through auditory, visual, kinesthetic, & tactile means

· Provide graphic organizers and/or highlighted materials

· Strategy and flexible groups based on formative assessment

504 Plans

Students can qualify for 504 plans if they have physical or mental impairments that affect or limit any of their abilities to:

· walk, breathe, eat, or sleep

· communicate, see, hear, or speak

· read, concentrate, think, or learn

· stand, bend, lift, or work

Examples of accommodations in 504 plans include:

· preferential seating

· extended time on tests and assignments

· reduced homework or classwork

· verbal, visual, or technology aids

· modified textbooks or audio-video materials

· behavior management support

· adjusted class schedules or grading

· verbal testing

· excused lateness, absence, or missed classwork

· pre-approved nurse's office visits and accompaniment to visits

· occupational or physical therapy

