Unit #4: Life Science 8: Heredity and Adaptations

Content Area:	Science
Course(s):	Science 8
Time Period:	Fourth Marking Period
Length:	Mid-March through June
Status:	Published

Unit Overview

Science is central to the lives of all Americans. Our science education program must prepare our students to be informed citizens and knowledgeable consumers. If the nation is to compete and lead in the global economy and if American students are to be able to pursue expanding employment opportunities in science-related fields, all students in Linden must have a solid K–12 science education that prepares them for college and careers.

The latest standards are based on learning progressions that provide students with opportunities to investigate core ideas in science in increasingly complex ways over time. The target goals for the curriculum are to help students know and use scientific explanations of the natural world and the designed world; to understand the nature and development of scientific knowledge and technological capabilities; and to participate productively in scientific and engineering practices.

STAGE 1- DESIRED RESULTS

2020 New Jersey Student Learning Standards-Science

Earth and Space Science

SCI.MS-ESS1-4 Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history.

Life Science

SCI.MS-LS4-4	Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals' probability of surviving and reproducing in a specific environment.
SCI.MS-LS4-3	Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.
SCI.MS-LS4-5	Gather and synthesize information about the technologies that have changed the way

	humans influence the inheritance of desired traits in organisms.
SCI.MS-LS4-6	Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.
SCI.MS-LS3-1	Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.
SCI.MS-LS4-2	Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.
SCI.MS-LS3-2	Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.
SCI.MS-LS4-1	Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.

Science and Engineering Practices

- Analyzing and Interpreting Data
- Asking Questions and Defining Problems
- Constructing Explanations and Designing Solutions
- Developing and Using Models
- Engaging in Argument from Evidence
- Obtaining, Evaluating, and Communicating Information
- Planning and Carrying Out Information
- Using Mathematics and Computational Thinking

Cross Cutting Concepts

- Cause and Effect
- Energy and Matter
- Influence of Engineering, Technology, and Science on Society and the Natural World
- Interdependence of Science, Engineering, and Technology
- Patterns
- Scale, Proportion, and Quantity
- Stability and Change
- Structure and Functions
- Systems and System Models

Disciplinary Core Ideas

Physical Sciences

• PS3D: Energy in Chemical Processes and Everyday Life

Life Sciences

- LS3A: Inheritance of Traits
- LS3B: Variation of traits
- LS4A: Evidence of Common Ancestry and Diversity
- LS4B: Natural Selection
- LS4C: Adaptation

Earth and Space Sciences

• ESS1C: The History of Planet Earth

Essential Questions

Investigation 1: The History of Life

Part 1: What does the fossil record tell us about the history of life on Earth?

Part 2: What does the fossil record tell us about how life has changed over time?

Investigation 2: Heredity

- Part 1: How can a model help us understand the relationship among organisms?
- Part 2: What leads to variation in a population?
- Part 3: How can we model how genetic information passes from generation to generation?
- Part 4: How can we predict the distribution of traits in future generations?

Investigation 3: Evolution

- Part 1: How do genetic mutations lead to variation in a population?
- Part 2: How do populations change over time?
- Part 3: How are humans influencing inheritance?

Enduring Understanding

This module focuses on the overlying concept that all life shares a genetic organization based on DNA and RNA. The theory of evolution is the unifying principle that explains both the similarity and diversity of life. Students will explore the varied lines of evidence, including the fossil record, the similarities between past and present organisms, the genetic principles of inheritance, and how natural selection produces adaptations that lead to changes in species and eventually the creation of new species.

Students will know...

Investigation 1: The History of Life

Biodiversity, extinct, extinction, fossil, fossil record, organism, paleontologist, principle of superposition, sediment, sedimentary rock, tetrapod, transition

Investigation 2: Heredity

Allele, characteristic, chromosome, cladogram, common ancestor, descendant, DNA, dominant, feature, filial

Gene, generation, genome, genotype, heredity, heterozygous, homozygous, inheritance, inherited characteristic

Limitation, most recent common ancestor, phenotype, population, protein, Punnett square, recessive, related

Species, trait, variation

Investigation 3: Evolution

Adaptation, artificial selection, gene therapy, genetically modified organism, mutation, natural selection speciation, theory, theory of evolution, transgenic organism

Science Resource Vocabulary

Investigation 1: The History of Life

Atom, body fossil, brachiopod, era, evolution, fossil record, fossil, geologic time, geologist, isotope, organism, paleontologist, particle, principle of superposition, radioactive, isotope, sediment, sedimentary rock, tetrapod, trace fossil, trilobite

Investigation 2: Heredity

Allele, characteristic, chromosome, cladogram, common ancestor, descendant, DNA (deoxyribonucleic acid), dominant evolve, F1 generation, F2 generation, feature, filial, gene, generation, genetics, genome, genotype, heredity, heterozygous, homozygous, human genome, infer, inheritance, inherited characteristic, most recent common ancestor mutation, parent generation (p generation), phenotype, population, protein, Punnett square, recessive, related species, trait, variation

Investigation 3: Evolution

adaptation, natural selection, theory, theory of evolution

Misconceptions

- Students believe that individual organisms can adapt to their environment
- Students do not understand the evidence presented in the Theory of Evolution
- Students do not understand hidden genes and how traits can reappear and disappear over time.
- Only one set of alleles is responsible for determining traits.
- Your genes determine all of your characteristics.
- All mutations are harmful.
- A dominant trait is the most likely to be found in the population.

Terms are often confused.

Students will be able to...

- Analyze data and use models to predict the characteristics of organisms missing from the fossil record
- Integrate information from a variety of media to develop evidence to explain a phenomenon
- Analyze and interpret data to construct explanations, using mathematical models involving probability

STAGE 2- EVIDENCE OF LEARNING

Formative Assessment

- 3- Minute Pause
- A-B-C Summaries
- Analogy Prompt
- Choral Response
- Debriefing
- Exit Card / Ticket
- Hand Signals
- Idea Spinner
- Index Card Summaries
- Inside-Outside Circle Discussion (Fishbowl)

- Journal Entry
- Misconception Check
- Observation
- One Minute Essay
- One Word Summary
- Portfolio Check
- Questions & Answers
- Quiz
- Self-Assessment
- Student Conference
- Think-Pair-Share
- Web or Concept Map

Authentic Assessments

- follow lab procedures
- complete assignments
- develop and utilize models
- cooperate in groups and with partners
- complete a written science journal
- maintain class notes and vocabulary in MacBook Airs
- complete data tables
- complete and interpret graphs

Benchmark Assessments

- Final module exam.
- End of investigation assessments.

STAGE 3- LEARNING PLAN

Instructional Map

Investigation 1: The Fossil Record – 7 sessions

Students watch a slide show that suggests the diversity of life on Earth that exists today. They consider how

that diversity came to exist and then start exploring fossils. They observe a collection of fossils and find out more about the organisms and when they lived. Students consider how scientists date fossils. They construct a time line of Earth's history and assign dates to the fossil samples. They add to the time line a set of events that extend their understanding of the history of life on earth.

Students consider the transition of vertebrates from water to land. They explore the fossil evidence that supports current theories of how this transition occurred based on limb structure. They predict what an organism may have looked like in the millions of years between two of the fossils. They watch a video that describes the discovery of such an organism and confirm or modify their prediction. Students turn their attention to modern organisms, dissect an owl pellet, and search for limb-structure similarities between the prey organism and the extinct organisms they learned about earlier.

Investigation 2: - 10 sessions

Students examine a human family tree and then build a vertebrate cladogram. They learn about common

ancestors and deduce that the more recent common ancestor organisms share, the more closely related they are. They use embryological data to determine where a dolphin fits in their cladogram.

Students explore the variation of our features to determine what traits they have. They determine the

distribution of the traits in the class. Students then study a population of larkeys, a make-believe animal, to

analyze their traits. Students are introduced to the structures and mechanisms of heredity, using a slide show

and then return to the larkeys.

Students use online simulation to model and predict the inheritance of traits in a larkey population.

Students learn how to use Punnett squares to predict the probability of offspring traits when the genotypes of parents are known. They compare the probabilities of inheritance in individual offspring and populations.

Investigation 3: Evolution-9 sessions

Students learn how genetic mutations can be adverse, advantageous, or neutral for individual organisms. They consider that mutations are a source of variation in populations and that positive mutations can lead to better adaptations in a population. They use online activities to explore the adaptation of color in walking sticks. Using online activities, students track a population of walking sticks over five generations. They consider how natural selection affects the incidence of walking stick color over time. They watch two videos about current research projects that lead to a deeper understanding of natural selection and speciation. Finally, they encounter evolution as the unifying theory that encompasses all they have learned in the course. They assess how those technologies might address current genetic issues. They communicate their findings to

Modification/Differentiation of Instruction

Differentiation Strategies for Special Education Students

- Remove unnecessary material, words, etc., that can distract from the content
- Use of off-grade level materials
- Provide appropriate scaffolding
- Limit the number of steps required for completion
- Time allowed
- Level of independence required
- Tiered centers, assignments, lessons, or products
- Provide appropriate leveled reading materials
- Deliver the content in "chunks"
- Varied texts and supplementary materials
- Use technology, if available and appropriate
- Varied homework and products
- Varied questioning strategies
- Provide background knowledge
- Define key vocabulary, multiple-meaning words, and figurative language.
- Use audio and visual supports, if available and appropriate
- Provide multiple learning opportunities to reinforce key concepts and vocabulary
- Meet with small groups to reteach idea/skill
- Provide cross-content application of concepts
- Ability to work at their own pace
- Present ideas using auditory, visual, kinesthetic, & tactile means
- Provide graphic organizers and/or highlighted materials
- Strategy and flexible groups based on formative assessment
- Differentiated checklists and rubrics, if available and appropriate

Differentiation Strategies for Gifted and Talented Students

- Increase the level of complexity
- Decrease scaffolding
- Variety of finished products
- Allow for greater independence
- Learning stations, interest groups
- Varied texts and supplementary materials
- Use of technology
- Flexibility in assignments
- Varied questioning strategies

- Encourage research
- Strategy and flexible groups based on formative assessment or student choice
- Acceleration within a unit of study
- Exposure to more advanced or complex concepts, abstractions, and materials
- Encourage students to move through content areas at their own pace
- After mastery of a unit, provide students with more advanced learning activities, not more of the same activity
- Present information using a thematic, broad-based, and integrative content, rather than just singlesubject areas

Differentiated Strategies for ELL Students

- Remove unnecessary materials, words, etc., that can distract from the content
- Provide appropriate scaffolding
- Limit the number of steps required for completion
- Gradually increase the level of independence required
- Tiered centers, assignments, lessons, or products
- Provide appropriate leveled reading materials
- Deliver the content in "chunks"
- Varied texts and supplementary materials, including visuals
- Use technology, if available and appropriate
- Differentiate homework and products
- Varied questioning strategies
- Provide background knowledge
- Define key vocabulary, multiple-meaning words, and figurative language.
- Use audio and visual supports, if available and appropriate
- Provide multiple learning opportunities to reinforce key concepts and vocabulary
- Meet with small groups to reteach idea/skill
- Provide cross-content application of concepts
- Allow students to work at their own pace
- Presenting ideas through auditory, visual, kinesthetic, & tactile means
- Role play
- Provide graphic organizers, highlighted materials
- Strategy and flexible groups based on formative assessment

Differentiation Strategies for At Risk Students

- Remove unnecessary materials, words, etc., that can distract from the content
- Provide appropriate scaffolding
- Limit the number of steps required for completion
- Gradually increase the level of independence required

- Tiered centers, assignments, lessons, or products
- Provide appropriate leveled reading materials
- Deliver the content in "chunks"
- Varied texts and supplementary materials
- Use technology, if available and appropriate
- Differentiate homework and products
- Varied questioning strategies
- Provide background knowledge
- Define key vocabulary, multiple-meaning words, and figurative language
- Use audio and visual supports, if available and appropriate
- Provide multiple learning opportunities to reinforce key concepts and vocabulary
- Meet with small groups to reteach idea/skill
- Provide cross-content application of concepts
- Presenting ideas through auditory, visual, kinesthetic, & tactile means
- Provide graphic organizers and/or highlighted materials
- Strategy and flexible groups based on formative assessment

504 Plans

Students can qualify for 504 plans if they have physical or mental impairments that affect or limit any of their abilities to:

- walk, breathe, eat, or sleep
- communicate, see, hear, or speak
- read, concentrate, think, or learn
- stand, bend, lift, or work

Examples of accommodations in 504 plans include:

- preferential seating
- extended time on tests and assignments
- reduced homework or classwork
- verbal, visual, or technology aids
- modified textbooks or audio-video materials
- behavior management support
- adjusted class schedules or grading
- verbal testing
- excused lateness, absence, or missed classwork
- pre-approved nurse's office visits and accompaniment to visits
- occupational or physical therapy

Modification Strategies

- Cooperative Grouping
- Extended Time
- Frequent Breaks
- Highlighted Text
- Interactive Notebook
- Modified Test
- Oral Directions
- Peer Tutoring
- Preferential Seating
- Re-direct
- Repeated Drill and Practice
- Shortened Assisgnment
- Teacher Notes
- Tutorials
- Use of Additional Reference Materials
- Use of Audio Resources

Differentiation Strategies

High Preparation

- Alternative Assessments
- Choice Boards
- Games and Tournaments
- Group Investigations
- Guided Reading
- Independent Research / Project
- Interest Groups
- Learning Contracts
- Leveled Rubrics
- Literature Circles
- Multiple Intelligence Options

- Multiple Texts
- Personal Agendas
- Project Based Learning (PBL)
- Stations / Centers
- Think-Tac-Toe
- Tiered Activities / Assignments
- Varying Graphic Organizers

Low Preparation

- Choice of Book / Activity
- Cubing Activities
- Exploration by Interest (using interest inventories)
- Flexible Grouping
- Goal Setting With Student
- Homework Options
- Jigsaw
- Mini Workshops to Re-teach or Extend Skills
- Open-ended Activities
- Think-Pair-Share by Readiness, Interest, or Learning Style
- Use of Collaboration
- Use of Reading Buddies
- Varied Journal Prompts
- Varied Product Choice
- Varied Supplemental Materials
- Work Alone / Together

Horizontal Intergration- Interdisciplinary Connections

Student Learning Standards for Mathematics

Grade 8

- 8.EE.B. Understand the connections between proportional relationships.
- 8.EE.C. Solve real world problems and mathematical problems.
- 8.F.A. Define, evaluate, and compare functions.
- 8.F.B Use functions to model relationships between quantities.

Reading Science and Technical Subjects

RST.6-8.1. Cite specific textual evidence to support analysis of science and technical texts.

RST.6-8.2. Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.

RST.6-8.3. Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.

RST.6-8.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to *grades 6-8 texts and topics*.

RST.6-8.5. Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.

RST.6-8.6. Analyze the author's purpose in providing an explanation, describing a procedure, or discussing an experiment in a text.

RST.6-8.7.Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).

RST.6-8.8.Distinguish among facts, reasoned judgment based on research findings, and speculation in a text.

RST.6-8.9. Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

RST.6-8.10. By the end of grade 8, read and comprehend science/technical texts in the grades 6-8 text complexity band independently and proficiently.

Writing History, Science and Technical Subjects

WHST.6-8.1. Write arguments focused on *discipline-specific content*.

A. Introduce claim(s) about a topic or issue, acknowledge and distinguish the claim(s) from alternate or opposing claims, and organize the reasons and evidence logically.

B. Support claim(s) with logical reasoning and relevant, accurate data and evidence that demonstrate an understanding of the topic or text, using credible sources.

C. Use words, phrases, and clauses to create cohesion and clarify the relationships among claim(s), counterclaims, reasons, and evidence.

D. Establish and maintain a formal/academic style, approach, and form.

E. Provide a concluding statement or section that follows from and supports the argument presented.

WHST.6-8.2. Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.

A. Introduce a topic and organize ideas, concepts, and information using text structures (e.g. definition,

classification, comparison/contrast, cause/effect, etc.) and text features (e.g. headings, graphics, and multimedia) when useful to aiding comprehension.

B. Develop the topic with relevant, well-chosen facts, definitions, concrete details, quotations, or other information and examples.

C. Use appropriate and varied transitions to create cohesion and clarify the relationships among ideas and concepts.

D. Use precise language and domain-specific vocabulary to inform about or explain the topic.

E. Establish and maintain a formal/academic style, approach, and form.

F. Provide a concluding statement or section that follows from and supports the information or explanation presented

WHST.6-8.3(See note; not applicable as a separate requirement)

WHST.6-8.4. Produce clear and coherent writing in which the development, organization, voice, and style are appropriate to task, purpose, and audience.

WHST.6-8.5. With some guidance and support from peers and adults, develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on how well purpose and audience have been addressed.

WHST.6-8.6. Use technology, including the Internet, to produce and publish writing and present the relationships between information and ideas clearly and efficiently.

WHST.6-8.7. Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration.

WHST.6-8.8. Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation.

WHST.6-8.9. Draw evidence from informational texts to support analysis, reflection, and research. WHST.6-8.10. Write routinely over extended time frames (time for research, reflection, metacognition/selfcorrection, and revision) and shorter time frames (a single sitting or a day or two) for a range of disciplinespecific tasks, purposes, and audiences.

2020 New Jersey Student Learning Standards- Computer Science and Design Thinking

Computer Science and Design Thinking Practices

CSDT.K-12.CSDTP1	Fostering an Inclusive Computing and Design Culture
CSDT.K-12.CSDTP2	Collaborating Around Computing and Design
CSDT.K-12.CSDTP3	Recognizing and Defining Computational Problems

CSDT.K-12.CSDTP4	Developing and Using Abstractions
CSDT.K-12.CSDTP5	Creating Computational Artifacts
CSDT.K-12.CSDTP6	Testing and Refining Computational Artifacts
CSDT.K-12.CSDTP7	Communicating About Computing and Design

8.2 Design Thinking

8.2.8.ED.1: Evaluate the function, value, and aesthetics of a technological product or system, from the perspective of the user and the producer.

8.2.8.ED.2: Identify the steps in the design process that could be used to solve a problem.

8.2.8.ED.3: Develop a proposal for a solution to a real-world problem that includes a model (e.g., physical prototype, graphical/technical sketch).

8.2.8.ED.4: Investigate a malfunctioning system, identify its impact, and explain the step-bystep process used to troubleshoot, evaluate, and test options to repair the product in a collaborative team.

8.2.8.ED.5: Explain the need for optimization in a design process.

8.2.8.ED.6: Analyze how trade-offs can impact the design of a product.

8.2.8.ED.7: Design a product to address a real-world problem and document the iterative design process, including decisions made as a result of specific constraints and trade-offs (e.g., annotated sketches).

8.2.8.ITH.1: Explain how the development and use of technology influences economic, political, social, and cultural issues.

8.2.8.ITH.2: Compare how technologies have influenced society over time.

8.2.8.ITH.3: Evaluate the impact of sustainability on the development of a designed product or system.

8.2.8.ITH.4: Identify technologies that have been designed to reduce the negative consequences of other technologies and explain the change in impact.

8.2.8.ITH.5: Compare the impacts of a given technology on different societies, noting factors that may make a technology appropriate and sustainable in one society but not in another.

8.2.8.NT.1: Examine a malfunctioning tool, product, or system and propose solutions to the problem.

8.2.8.NT.2: Analyze an existing technological product that has been repurposed for a different function.

8.2.8.NT.3: Examine a system, consider how each part relates to other parts, and redesign it for another purpose.

8.2.8.NT.4: Explain how a product designed for a specific demand was modified to meet a new demand and led to a new product.

8.2.8.ETW.1: Illustrate how a product is upcycled into a new product and analyze the short-

and long-term benefits and costs.

8.2.8.ETW.2: Analyze the impact of modifying resources in a product or system (e.g., materials, energy, information, time, tools, people, capital).

8.2.8.ETW.3: Analyze the design of a product that negatively impacts the environment or society and develop possible solutions to lessen its impact.

8.2.8.ETW.4: Compare the environmental effects of two alternative technologies devised to address climate change issues and use data to justify which choice is best.

8.2.8.EC.1: Explain ethical issues that may arise from the use of new technologies.8.2.8.EC.2: Examine the effects of ethical and unethical practices in product design and development.

2020 New Jersey Student Learning Standards- Career Readiness, Life Literacies, and Key Skills

Career Readiness, Life Literacies, and Key Skills Practices

CRP.K-12.CRP1	Act as responsible and contributing community members and employee.
CRP.K-12.CRP2	Attend to financial well-being.
CRP.K-12.CRP3	Consider the environmental, social and economic impacts of decisions.
CRP.K-12.CRP4	Demonstrate creativity and innovation.
CRP.K-12.CRP5	Utilize critical thinking to make sense of problems and persevere in solving them.
CRP.K-12.CRP6	Model integrity, ethical leadership and effective management.
CRP.K-12.CRP7	Plan education and career paths aligned to personal goals.
CRP.K-12.CRP8	Use technology to enhance productivity, increase collaboration and communicate effectively.
CRP.K-12.CRP9	Work productively in teams while using cultural/global competence.

9.2 Career Awareness and Planning

9.2.8.CAP.1: Identify offerings such as high school and county career and technical school courses, apprenticeships, military programs, and dual enrollment courses that support career or occupational areas of interest.

9.2.8.CAP.2: Develop a plan that includes information about career areas of interest.

9.2.8.CAP.3: Explain how career choices, educational choices, skills, economic conditions, and personal behavior affect income.

9.2.8.CAP.4: Explain how an individual's online behavior (e.g., social networking, photo exchanges, video postings) may impact opportunities for employment or advancement.

9.2.8.CAP.11: Analyze potential career opportunities by considering different types of resources, including occupation databases, and state and national labor market statistics.

9.2.8.CAP.12: Assess personal strengths, talents, values, and interests to appropriate jobs and careers to maximize career potential.

9.4 Life Literacies and Key Skills

9.4.8.Cl.1: Assess data gathered on varying perspectives on causes of climate change (e.g., cross-cultural, gender-specific, generational), and determine how the data can best be used to design multiple potential solutions (e.g., RI.7.9, 6.SP.B.5, 7.1.NH.IPERS.6, 8.2.8.ETW.4).

9.4.8.CI.2: Repurpose an existing resource in an innovative way (e.g., 8.2.8.NT.3).

9.4.8.CI.3: Examine challenges that may exist in the adoption of new ideas (e.g., 2.1.8.SSH, 6.1.8.CivicsPD.2).

9.4.8.CI.4: Explore the role of creativity and innovation in career pathways and industries.

9.4.8.CT.1: Evaluate diverse solutions proposed by a variety of individuals, organizations, and/or agencies to a local or global problem, such as climate change, and use critical thinking skills to predict which one(s) are likely to be effective (MS-ETS1-2).

9.4.8.CT.2: Develop multiple solutions to a problem and evaluate short- and long-term effects to determine the most plausible option (e.g., MS-ETS1-4, 6.1.8.CivicsDP.1).

9.4.8.CT.3: Compare past problem-solving solutions to local, national, or global issues and analyze the factors that led to a positive or negative outcome.

9.4.8.DC.1: Analyze the resource citations in online materials for proper use.

9.4.8.DC.2: Provide appropriate citation and attribution elements when creating media products (e.g., W.6.8).

9.4.8.DC.3: Describe tradeoffs between allowing information to be public (e.g., within online games) versus keeping information private and secure.

9.4.8.DC.4: Explain how information shared digitally is public and can be searched, copied, and potentially seen by public audiences.

9.4.8.DC.5: Manage digital identity and practice positive online behavior to avoid inappropriate forms of selfdisclosure.

9.4.8.DC.6: Analyze online information to distinguish whether it is helpful or harmful to reputation.

9.4.8.DC.7: Collaborate within a digital community to create a digital artifact using strategies such as crowdsourcing or digital surveys.

9.4.8.DC.8: Explain how communities use data and technology to develop measures to respond to effects of climate change (e.g., smart cities).

9.4.8.GCA.1: Model how to navigate cultural differences with sensitivity and respect (e.g., 1.5.8.C1a).

9.4.8.GCA.2: Demonstrate openness to diverse ideas and perspectives through active discussions to achieve a group goal.

9.4.8.IML.1: Critically curate multiple resources to assess the credibility of sources when searching for information.

9.4.8.IML.2: Identify specific examples of distortion, exaggeration, or misrepresentation of information.

9.4.8.IML.3: Create a digital visualization that effectively communicates a data set using formatting techniques such as form, position, size, color, movement, and spatial grouping (e.g., 6.SP.B.4, 7.SP.B.8b).

9.4.8.IML.4: Ask insightful questions to organize different types of data and create meaningful visualizations.

9.4.8.IML.5: Analyze and interpret local or public data sets to summarize and effectively communicate the data.

9.4.8.IML.6: Identify subtle and overt messages based on the method of communication.

9.4.8.IML.7: Use information from a variety of sources, contexts, disciplines, and cultures for a specific purpose (e.g., 1.2.8.C2a, 1.4.8.CR2a, 2.1.8.CHSS/IV.8.AI.1, W.5.8, 6.1.8.GeoSV.3.a, 6.1.8.CivicsDP.4.b, 7.1.NH. IPRET.8).

9.4.8.IML.8: Apply deliberate and thoughtful search strategies to access high-quality information on climate change (e.g., 1.1.8.C1b).

9.4.8.IML.9: Distinguish between ethical and unethical uses of information and media (e.g., 1.5.8.CR3b, 8.2.8.EC.2).

9.4.8.IML.10: Examine the consequences of the uses of media (e.g., RI.8.7).

9.4.8.IML.11: Predict the personal and community impact of online and social media activities.

9.4.8.IML.12: Use relevant tools to produce, publish, and deliver information supported with evidence for an authentic audience.

9.4.8.IML.13: Identify the impact of the creator on the content, production, and delivery of information (e.g., 8.2.8.ED.1).

9.4.8.IML.14: Analyze the role of media in delivering cultural, political, and other societal messages.

9.4.8.IML.15: Explain ways that individuals may experience the same media message differently.

9.4.8.TL.1: Construct a spreadsheet in order to analyze multiple data sets, identify relationships, and facilitate databased decision-making.

9.4.8.TL.2: Gather data and digitally represent information to communicate a real-world problem (e.g., MS-ESS3-4, 6.1.8.EconET.1, 6.1.8.CivicsPR.4).

9.4.8.TL.3: Select appropriate tools to organize and present information digitally.

9.4.8.TL.4: Synthesize and publish information about a local or global issue or event (e.g., MS-LS4-5, 6.1.8.CivicsPI.3).

9.4.8.TL.5: Compare the process and effectiveness of synchronous collaboration and asynchronous collaboration.

9.4.8.TL.6: Collaborate to develop and publish work that provides perspectives on a real-world problem.

Vertical Integration- Discipline Mapping

Grade 5: Living Systems

Grade 6: Diversity of Life

Grade 7: Populations and Ecosystems

Preparation for High School Science Curriculum.

Additional Materials

Word wall Video on matter STC website Studyjam videos (various topics) student guide and soure book colored pencils for recording safety procedure poster periodic table of elements materials poster arguementation bulletin board