Unit 04 - Graphing Linear Equations and Inequalities

Content Area: Mathematics
Course(s): Algebra I
Time Period: October
Length: 25 days
Status: Published

Enduring Understandings

- A line on a graph can be represented by a linear equation. Forms of linear equations include Slope-Intercept, Point-Slope, and Standard Forms.
- If the ratio of two variables is constant, then the variables have a special relationship, called a direct variation.
- Ratios can be used to show relationship between changing quantities, such as vertical and horizontal change.
- The relationship between two lines can be determined by comparing their slopes and y-intercepts.
- The slope of a line tells you the direction and steepness of a line
- The slope of an increasing line is positive, a decreasing line is negative, a vertical line is undefined, and a horizontal line is zero

Essential Questions

- How can the slope of two or more lines tell you whether the lines are parallel, perpendicular, or neither?
- How do the slope and y-intercept of linear functions relate tables, graphs, and equations?
- What does the slope of a line indicate about the line?
- What information does the equation of a line give you?
- · What is a linear function?
- What is slope intercept form? How can you use it to graph a linear function?

Lesson Titles

- Direct Variation
- Graphing Absolute Value Functions
- Parallel and Perpendicular Lines
- Point-Slope Form
- Rate of Change and Slope
- Slope-Intercept Form
- Standard Form

Standards/Indicators

CCSS.Math.Practice.MP1

Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

CCSS.Math.Content.HSA-SSE.A.1

Interpret expressions that represent a quantity in terms of its context.

CCSS.Math.Practice.MP2

Reason abstractly and quantitatively.

CCSS.Math.Content.HSA-SSE.A.1.a

Interpret parts of an expression, such as terms, factors, and coefficients.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

CCSS.Math.Practice.MP3

Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

CCSS.Math.Practice.MP4

Model with mathematics.

CCSS.Math.Content.HSA-SSE.A.2

Use the structure of an expression to identify ways to rewrite it.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem

or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

CCSS.Math.Content.HSF-IF.B.4

For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.

CCSS.Math.Practice.MP6

Attend to precision.

CCSS.Math.Content.HSN-Q.A.2

Define appropriate quantities for the purpose of descriptive modeling.

CCSS.Math.Content.HSF-IF.B.6

Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

CCSS.Math.Practice.MP7

Look for and make use of structure.

CCSS.Math.Content.HSF-IF.C.7

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well remembered $7 \times 5 + 7 \times 3$, in preparation for learning about the distributive property. In the expression $x^2 + 9x + 14$, older students can see the 14 as 2×7 and the 9 as 2 + 7. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5 - 3(x - y)^2$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

CCSS.Math.Practice.MP8

Look for and express regularity in repeated reasoning.

CCSS.Math.Content.HSF-IF.C.7.a

Graph linear and quadratic functions and show intercepts, maxima, and minima.

CCSS.Math.Content.HSF-IF.C.7.b

Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation (y-2)/(x-1)=3. Noticing the regularity in the way terms cancel when expanding (x-1)(x+1), $(x-1)(x^2+x+1)$, and $(x-1)(x^3+x^2+x+1)$ might lead them to the general formula for the sum of a geometric series. As they

	work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.
CCSS.Math.Content.HSF-IF.C.9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
CCSS.Math.Content.HSF-BF.A.1	Write a function that describes a relationship between two quantities.
CCSS.Math.Content.HSF-BF.A.1.a	Determine an explicit expression, a recursive process, or steps for calculation from a context.
CCSS.Math.Content.HSA-CED.A.2	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
CCSS.Math.Content.HSF-BF.B.3	Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, k $f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.
CCSS.Math.Content.HSF-LE.A.1	Distinguish between situations that can be modeled with linear functions and with exponential functions.
CCSS.Math.Content.HSF-LE.A.1.b	Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
CCSS.Math.Content.HSF-LE.A.2	Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).
CCSS.Math.Content.HSF-LE.B.5	Interpret the parameters in a linear or exponential function in terms of a context.
CCSS.Math.Content.HSG-GPE.B.5	Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).

Inter-Disciplinary Connections

- Business
- Chemistry
- Computers
- Engineering
- English
- Geography
- History
- Physics

Warm-Up

- PARCC type of question
- SAT question of the day
- Skill needed to do lesson
- Use What You Know type of question

Anticipatory Set

- 5 Minute Activity Based
- connecting previous lessons
- connecting vocabulary with roots words
- Discussion including vocab review/recall
- Video Clip

Instructional Strategies, Learning Activities, and Levels of Blooms/DOK

- students will work as a team and explain their work
- #1- Blooms Knowledge Remember previously learned information
- #2 Blooms Comprehension Demonstrate an understanding of facts
- #3 Blooms Application Apply Knowledge to actual situations
- #4 Blooms Analysis Break down objects or ideas into simpler parts and find evidence to support generalizations
- #5 Blooms Synthesis Compile component ideas into a new whole or propose alternative solutions
- #6 Blooms Evaluation Make and defend judgments based on internal evidence or external criteria
- Discussion on vocabulary including slope and rate of change, y-intercept, vertical, horizontal, parallel, perpendicular
- Introduction, notes, and examples on finding the slope given a graph
- Introduction, notes, and examples on finding the slope given a table
- Introduction, notes, and examples on finding the slope given an equation
- · Introduction, notes, and examples on finding the slope given two points
- · Introduction, notes, and examples on graphing equations by using the slope and y-intercept
- · Introduction, notes, and examples on graphing inequalities
- Introduction, notes, and examples on parallel and perpendicular lines
- Introduction, notes, and examples on translating an equation to put it in slope intercept form
- Introduction, notes, and examples on writing equations in slope intercept form given two points
- review homework if need answers posted on Edmodo
- review warm up
- students will work individually

Closure

- evaluate your understanding of the lesson
- Pass out of class
- turn to your partner and discuss

Formative Assessment

- Edmodo assignments
- Guided Review
- homework/classwork
- Mathxlforschool
- Partner Board Presentation
- Pass Out of Class
- Socrative
- teacher observation
- think-pair-share
- Warm up Review
- White Boards

Summative Assessment

- quiz
- unit test
- warm up quiz

Resources & Technology

- Algebra 1 Book
- class dojo.com
- color pencils
- desmos.com
- Edmodo
- edpuzzle.com
- Google Forms
- graphing calculator
- Learn Zillion
- mathway.com
- mathxlforschool.com
- quizlet.com
- Remind
- smartboard
- socrative
- student whiteboards
- Teacher Generated Worksheets
- · video clips