CAE-II- Unit 1B- Hardware-Operating-Systems -Drawing File Extensions

Content Area:	СТЕ
Course(s):	Computer Aided Engineering
Time Period:	September
Length:	1
Status:	Published

Unit Overview:

Students will learn about filename extensions as identifiers specified as a suffix to the name of a computer file. The extension indicates a characteristic of the file contents or its intended use. Computers have many different types of files on it, and each one has its own file extension. A file extension is a three- or four-letter identifier found at the end of a file name and following a period. These extensions tell you about the characteristics of a file and its use. The file extension helps an operating system determine which program on a computer the file is associated with.

Enduring Understandings:

The important ideas and core processes that are central to this lesson are:

The purpose of the file extension is to identify the type of file and how the computers use this information to open the file with the correct software application.

Essential Questions:

- What software open a .pdf file?
- What software open a .rvt file?
- Are file extensions necessary?
- How many file extensions are there?
- How to change .bak files to .dwg files
- What Happens If I Change A File's Extension?
- What is the file extension for file?
- What is the purpose of file extensions?
- What software open a .dwg file?
- What software open a .dwg file?
- What software open a .dxf file?
- What software open a .dxf file?
- What software open a .stl file?
- What Types Of Extensions Are There

Standards/Indicators/Student Learning Objectives (SLOs):

MANU.9-12.9.4.12.M.(1).5	Strategize ways to improve production processes in order to achieve manufacturing goals and meet customer and product standards.
MANU.9-12.9.4.12.M.(3).5	Develop hands-on knowledge of equipment operation to identify maintenance needs and maximize performance.
MANU.9-12.9.4.12.M.12	Develop and interpret tables, charts, and figures to support written and oral communications.
MANU.9-12.9.4.12.M.13	Listen to and speak with diverse individuals to enhance communication skills.
MANU.9-12.9.4.12.M.27	Employ computer operations applications to manage tasks.
MANU.9-12.9.4.12.M.63	Employ information management techniques and strategies to assist in decision-making.
MANU.9-12.9.4.12.M.64	Employ planning and time management skills and tools to enhance results and complete work tasks.
MANU.9-12.9.4.12.M.65	Describe and employ technical knowledge and skills required for careers in manufacturing in order to perform basic workplace activities.

Lesson Titles:

- Copy, move, delete, and rename files
- Create and use shortcuts
- Describe different types of CAD files.
- Identify file types
- Identify parts of the File Explorer window
- Managing Files
- Search for files
- Use File Explorer to navigate folders
- Using File Explorer

Career Readiness, Life Literacies, & Key Skills

TECH.9.4.12.CI	Creativity and Innovation
TECH.9.4.12.Cl.1	Demonstrate the ability to reflect, analyze, and use creative skills and ideas (e.g., 1.1.12prof.CR3a).
TECH.9.4.12.Cl.2	Identify career pathways that highlight personal talents, skills, and abilities (e.g., 1.4.12prof.CR2b, 2.2.12.LF.8).
TECH.9.4.12.CI.3	Investigate new challenges and opportunities for personal growth, advancement, and transition (e.g., 2.1.12.PGD.1).
TECH.9.4.12.CT	Critical Thinking and Problem-solving
	Innovative ideas or innovation can lead to career opportunities.
	With a growth mindset, failure is an important part of success.
	Collaboration with individuals with diverse experiences can aid in the problem-solving

Inter-Disciplinary Connections:

LA.RST.11-12.3	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.
LA.RST.11-12.7	Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem.
LA.RST.11-12.9	Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible.
LA.RST.11-12.10	By the end of grade 12, read and comprehend science/technical texts in the grades 11-CCR text complexity band independently and proficiently.
LA.WHST.11-12.4	Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
SCI.HS-ETS1-4	Use a computer simulation to model the impact of proposed solutions to a complex real- world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.
SCI.HS-ETS1-3	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
SOC.9-12.1.4.2	Demonstrate effective presentation skills by presenting information in a clear, concise, and well-organized manner taking into consider appropriate use of language for task and audience.
TECH.8.1.12.B	Creativity and Innovation: Students demonstrate creative thinking, construct knowledge and develop innovative products and process using technology.
TECH.8.1.12.B.CS1	Apply existing knowledge to generate new ideas, products, or processes.
	Although there are many types of geometry, school mathematics is devoted primarily to plane Euclidean geometry, studied both synthetically (without coordinates) and analytically (with coordinates). Euclidean geometry is characterized most importantly by the Parallel Postulate, that through a point not on a given line there is exactly one parallel line. (Spherical geometry, in contrast, has no parallel lines.)
	An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts—interpreting a schematic drawing, estimating the amount of wood needed to frame a sloping roof, rendering computer graphics, or designing a sewing pattern for the most efficient use of material.
	Connections to Equations.
	In the approach taken here, two geometric figures are defined to be congruent if there is a sequence of rigid motions that carries one onto the other. This is the principle of superposition. For triangles, congruence means the equality of all corresponding pairs of sides and all corresponding pairs of angles. During the middle grades, through experiences drawing triangles from given conditions, students notice ways to specify enough measures in a triangle to ensure that all triangles drawn with those measures are congruent. Once these triangle congruence criteria (ASA, SAS, and SSS) are established using rigid motions, they can be used to prove theorems about triangles, quadrilaterals, and other geometric figures.
	Analytic geometry connects algebra and geometry, resulting in powerful methods of

analysis and problem solving. Just as the number line associates numbers with locations in one dimension, a pair of perpendicular axes associates pairs of numbers with locations in two dimensions. This correspondence between numerical coordinates and geometric points allows methods from algebra to be applied to geometry and vice versa. The solution set of an equation becomes a geometric curve, making visualization a tool for doing and understanding algebra. Geometric shapes can be described by equations, making algebraic manipulation into a tool for geometric understanding, modeling, and proof. Geometric transformations of the graphs of equations correspond to algebraic changes in their equations.

Equity Considerations

LGBTQ and Disabilities Mandate

Topic: Analyze the achievements of LGBT engineers

Materials Used: https://queerbio.com/wiki/index.php?title=LGBTQ_Engineers

Addresses the Following Component of the Mandate:

- Economic
- Political
- Social

Holocaust Mandate

Topic: Gender bias in Engineering workforce

Materials Used: https://swe.org/wp-content/uploads/2018/04/aera18_proceeding_1305851.pdf

Addresses the Following Component of the Mandate:

- Bias
- Bigotry

- Bullyinh
- Holocaust Studies
- Prejudice

Asian American Pacific Islander Mandate

Topic: AAPI in the News for engineering

Materials Used: https://www.saseconnect.org/pro

Addresses the Following Component of the Mandate:

- Economic
- Political
- Social

Climate Change

Topic: How Environmental Engineers will change our future

Materials Used: <u>https://newengineer.com/blog/fixing-the-future-environmental-engineers-and-climate-change-1421737</u>

Addresses the Following Component of the Mandate:

- Economic
- Political
- Social

Amistad Mandate

Instructional Strategies, Learning Activities, and Levels of Blooms/DOK:

• Direct Instruction: Compare & Contrast- Possibilities Include: Explain Multiview Drawings vs. Orthographic drawings

• Direct Instruction: Demonstrations- Possibilities Include: Model for other students Orthographic projection problems on the board.

• Direct Instruction: Lecture- Possibilities Include: Take notes on information given.

• Experiential Learning: Field Trips- Possibilities Include: Attend college visits to explore majors related to architecture and engineering

• Experiential Learning: Focused Imaging- Possibilities Include: Viosalizing and executing orthographic projection sketches

• Experiential Learning: Games- Possibilities Include: Use Socrative, a cloud-based student response system (games and quizzes)

• Experiential Learning: Model Building- Possibilities Include: Create computer based drawings on the white board

• Experiential Learning: Simulations- Possibilities Include: Use AutoDesk software to model orthographic drawings

- Experiential Learning: Surveys- Possibilities Include: Use Calipers and Micrometers to measure objects
- Independent Study: Assigned Questions- Possibilities Include: Create Multiview Sketching assignments
- Independent Study: Homework- Possibilities Include: Sketch multiview drawings on grid paper
- Independent Study: Research Projects- Possibilities Include: Reverse Engineering
- Indirect Instruction: Problem Solving- Possibilities Include: Create Multiview drawings- Top, Front, Side and Sections/
- Instructional Skills: Explaining- Possibilities Include: Industry Standard Concepts
- Interactive Instruction: Brainstorming- Possibilities Include: Working Drawings
- Interactive Instruction: Peer Partner Learning- Possibilities Include: Exploring and sketching the missing orthographic views
- Interactive Instruction: Problem Solving- Possibilities Include: Working Drawings in 2D and 3D Modeling
- Interactive Instruction: Think, Pair, Share- Possibilities Include: Working together to solve a problem

Modifications

- Classroom: Clarify that student understands directions
- Classroom: Cuing student to refocus (verbal/nonverbal)
- Classroom: Praise for positive behaviors.
- Classroom: Seat student near instruction, avoid distracting stimuli
- Classroom: Study guides provided, when available. Prior knowledge to upcoming quizzes/tests.
- Implements the following teaching strategies with students who need special accommodations. Instructor also implements specific requirements from the students' individual reports.
- Testing: Delsea One Students benefit from increased opportunities for enrichment and tutoring during Delsea One Tutoring.
- Testing: Extra Time
- Testing: Repeating, clarifying, or rewording directions.

ELL Modifications:

- Choice of test format (multiple-choice, essay, true-false)
- Continue practicing vocabulary
- Provide study guides prior to tests
- Read directions to the student
- Read test passages aloud (for comprehension assessment)
- Vary test formats
- Use real objects when possible
- Use visuals

IEP & 504 Modifications:

- Allow for redos/retakes
- Assign fewer problems at one time (e.g., assign only odds or evens)
- Differentiated center-based small group instruction
- Extra time on assessments
- Highlight key directions
- If a manipulative is used during instruction, allow its use on a test
- Opportunities for cooperative partner work
- Provide reteach pages if necessary
- Provide several ways to solve a problem if possible
- Provide visual aids and anchor charts
- Test in alternative site
- Tiered lessons and assignments
- Use of a graphic organizer
- Use of concrete materials and objects (manipulatives)
- Use of word processor
- Testing modifications: Students could use calculator and/or other math tools.
- Testing modifications: Word banks, multiple choice, matching questions help when possible

G&T Modifications:

- Alternate assignments/enrichment assignments
- Enrichment projects
- Extension activities
- Higher-level cooperative learning activities
- Pairing direct instruction with coaching to promote self-directed learning
- Provide higher-order questioning and discussion opportunities
- Provide texts at a higher reading level
- Tiered assignments

• Tiered centers

At Risk Modifications

- Additional time for assignments
- Adjusted assignment timelines
- Agenda book and checklists
- Answers to be dictated
- Assistance in maintaining uncluttered space
- Books on tape
- Concrete examples
- Extra visual and verbal cues and prompts
- Follow a routine/schedule
- Graphic organizers
- Have students restate information
- No penalty for spelling errors or sloppy handwriting
- Peer or scribe note-taking
- Personalized examples
- Preferential seating
- Provision of notes or outlines
- Reduction of distractions
- Review of directions
- Review sessions
- Space for movement or breaks
- Support auditory presentations with visuals
- Teach time management skills
- Use of a study carrel
- Use of mnemonics
- Varied reinforcement procedures
- Work in progress check
- Retesting

Formative Assessment:

- Anticipatory Set
- Closure
- Conferences between the instructor and student at various points in the semester.
- Graded homework assignments
- Homework exercises as review for exams and class discussions.

- In-class activities where students informally present their results.
- Independent worksheets
- Observations during in-class activities; of students' non-verbal feedback during lecture.
- Portfolios reviewed periodically during the semester.
- Question and answer sessions, formal—planned and informal—spontaneous.
- Student feedback collected by periodically answering specific question about the instruction and their self-evaluation of performance and progress.
- Warm-Up

Benchmark Assessment

Skills-based assessment

Reading response

Writing prompt

Lab practical

Alternative Assessment

Performance tasks

Project-based assignments

Problem-based assignments

Presentations

Reflective pieces

Concept maps

Case-based scenarios

Portfolios

By Rubric shown below.

Evaluation Rubric

Category	1	Does Not Meet Expectations (0-25% of points)	2	Attempted to Meet Expectations (25-50% of points)	3	Meets Expectations (50-75% of points)	4		# of Pts.
Defining the Problem	stat pro no doc nee dev or 1	fers an unclear tement of the oblem. There is support, cumentation, or ed for velopment. Little no work is dent.	and offe pro sup spe dev	explanation is ered to the blem without any port and cifications for	supp giver to de Desi	ort/documentation is n to suggest the need evelop the product. gn specifications constraints are also	des des and offe and doc sho ove that	engthy clear cription where ign specifications constraints are ered. Research supporting sumentation ws an erwhelming need t the problem uld be pursued development.	
Research, Brainstorming, and Developing Ideas	bra acc ger	tle research and instorming complished. Ideas nerated are not ginal.	as a brai gen resu brai pro	n outcome of nstorming. Ideas erated are a ilt of the nstorming cess and not	and outco brain resea sugg for th	s generated are new original as an ome of astorming and arch. Little restions are offered he rest of the design ess if any.	Ma gen out bra rese Sug det det des the	ny new ideas are lerated as an come of instorming and earch. ggestions and ails are given for ign constraints of product and for nufacturing.	
Conceptual Design and Sketching	off	ly one sketch is ered for a design iew.	are revi ske des	offered for a ew. The tches offer no ign specifications	are o The desig anno	e than two sketches offered for a review. sketches include gn specifications and station for loping the design.	Mu dra (mi Add acc orth ison dra for the rev spe ann clea ske Con	ltiple thumbnail wings are offered nimum of 5). ditionally, urate nographic and metric views are wn to proportion communicating design for a iew. Design cifications and totations are arly noted on the tches. nstraints are also usidered and	

Category	1	Does Not Meet Expectations	2	Attempted to Meet Expectations	3	Meets Expectations	4		# of
		(0-25% of points)		(25-50% of points)		(50-75% of points)		(75-100% of points)	Pts.
Developing the Design	wor with draw repr part the are Ann dim bloc	nout an assembly ving. 3D resentations of each of the assembly on working drawings missing. notations, ensioning and	drav asse wor Eac drav 3D Anr nota dim	et of production wings with an embly and king drawings. h orthographic wing includes a representation. notations, ations, blocks, and ensioning are	drav assee drav drav addi orth drav repr incl mul Ann nota dim	embly and working wings. Mulitview wings are added itional to ographic wings. A 3D resentation is uded on all tiview drawings.	prod with Eac drav orth incl repr acc nota dim	h an assembly and king drawings. h multiview wing (including hographic) ludes a 3D resentation with urate annotations, ations, blocks,	
Making a Model or Prototype	does	del is missing or s not look like	to sl inac and doe	ccurate in scale, dimensioning	prop dim acco sket	portion and ensioning ording to concept	proj mod desi indu con dim	curate and portionally deled according to ign specifications, ustry standards, straints, nensions, and tches.	
Engineering Testing and Evaluating the Design	desi mis	ting and evaluating gns/model are sing or not cked/approved.	veri by c	ting and fication attempted checks and rovals without ılts.	veri com cheo deta follo	cks/approvals and iled results are not owing industry	acci eacl indu Tes of d indi nec	U	

Category	Did Not Meet Expectations	Attempted to Meet Expectations	Meets 3 Expectations		# of Pts.
	(0-25% of points)	(25-50% of points)	(50-75% of points)	(75-100% of points)	
Revising the	No attempt made to	Designs revised	Designs revised	Production drawings are	
Design	revise the design.	without revision	according to change	changed according to	

	Revision blocks not completed.	blocks completed.	requests and revision blocks filled out appropriately, but no approval or checking sought after the first revision.	testing and check results if needed. Revision blocks are noted and approval/checking/testing continues until plans have final approval.
Creating a Final Model, Prototype, or Mockup	Missing prototype model or mockup.	Mockup or prototype model is not accurate according to production drawings		An accurate example of a manufactured model or mockup of the model is created according to final approved production drawings. Accurate design specifications, materials, and constraints are followed and implemented in developing the example.
Presentation	A presentation given without preparation and an outline.	A presentation given without a professional presence, good public speaking and a well thought out organized outline.	An organized outlined presentation with a professional presence, a written proposal, good public speaking and visual aids.	 An oral professional proposal given, including: 1. Written proposal with support documentation. 2. Conceptual designs. 3. Production drawings. 4. Prototype or mockup. 5. Testing and evaluation results. 6. Outline or slides of presentation given. 7. Good public speaking. 8. Professional presence.

- Alternate Assessment
- Benchmark
- Final examination (a truly summative assessment) about the specified lesson.
- Instructor self-evaluation about the current lesson
- Marking Period Assessment
- Portfolio that include all class assignments.

• Projects (project phases submitted at various completion points could be formatively assessed) about the specified lesson.

- Quiz, Test, MP Assessments about the specified lesson
- Student evaluation of the lesson (teaching effectiveness)

Resources & Materials:

- Chromebooks
- Desktop Computers
- Large format Printer (plotter)
- Power Point Presentations
- Smart Board Activities

• Textbook- Exploring Drafting, Instructor's Manual Instructor's Manual, 10th Edition by John R. Walker (Author), Bernard D. Mathis

• Textbook- Glencoe Mechanical Drawing: Board and CAD Techniques, Student Edition: 1st (First) Edition by Glencoe McGraw-Hil

• Textbook-Basic Technical Drawing by Spencer, Dygon, Novak Glencoe McGraw-Hill

Technology:

Software- Auto-CAD from Auto Desk

Youtube Videos	
TECH.8.1.12.A	Technology Operations and Concepts: Students demonstrate a sound understanding of technology concepts, systems and operations.
TECH.8.1.12.A.1	Create a personal digital portfolio which reflects personal and academic interests, achievements, and career aspirations by using a variety of digital tools and resources.
TECH.8.1.12.A.CS1	Understand and use technology systems.
TECH.8.1.12.A.CS2	Select and use applications effectively and productively.
TECH.8.1.12.B	Creativity and Innovation: Students demonstrate creative thinking, construct knowledge and develop innovative products and process using technology.
TECH.8.1.12.B.CS1	Apply existing knowledge to generate new ideas, products, or processes.
TECH.8.1.12.B.CS2	Create original works as a means of personal or group expression.
TECH.8.1.12.C	Communication and Collaboration: Students use digital media and environments to communicate and work collaboratively, including at a distance, to support individual learning and contribute to the learning of others.
TECH.8.1.12.C.1	Develop an innovative solution to a real world problem or issue in collaboration with peers and experts, and present ideas for feedback through social media or in an online community.
TECH.8.1.12.C.CS1	Interact, collaborate, and publish with peers, experts, or others by employing a variety of digital environments and media.
TECH.8.1.12.C.CS2	Communicate information and ideas to multiple audiences using a variety of media and formats.

TECH.8.1.12.C.CS3	Develop cultural understanding and global awareness by engaging with learners of other cultures.
TECH.8.1.12.C.CS4	Contribute to project teams to produce original works or solve problems.
TECH.8.1.12.D	Digital Citizenship: Students understand human, cultural, and societal issues related to technology and practice legal and ethical behavior.
TECH.8.1.12.D.CS3	Exhibit leadership for digital citizenship.
TECH.8.1.12.E	Research and Information Fluency: Students apply digital tools to gather, evaluate, and use information.
TECH.8.1.12.E.CS2	Locate, organize, analyze, evaluate, synthesize, and ethically use information from a variety of sources and media.
TECH.8.1.12.E.CS4	Process data and report results.
TECH.8.2.12	Technology Education, Engineering, Design, and Computational Thinking - Programming: All students will develop an understanding of the nature and impact of technology, engineering, technological design, computational thinking and the designed world as they relate to the individual, global society, and the environment.
TECH.8.2.12.A	The Nature of Technology: Creativity and Innovation: Technology systems impact every aspect of the world in which we live.
TECH.8.2.12.A.CS3	The relationships among technologies and the connections between technology and other fields of study.
TECH.8.2.12.B.CS2	The effects of technology on the environment.
TECH.8.2.12.C	Design: The design process is a systematic approach to solving problems.
TECH.8.2.12.C.2	Analyze a product and how it has changed or might change over time to meet human needs and wants.
TECH.8.2.12.C.4	Explain and identify interdependent systems and their functions.
TECH.8.2.12.C.5	Create scaled engineering drawings of products both manually and digitally with materials and measurements labeled.
TECH.8.2.12.C.6	Research an existing product, reverse engineer and redesign it to improve form and function.
TECH.8.2.12.C.CS1	The attributes of design.
TECH.8.2.12.C.CS2	The application of engineering design.
TECH.8.2.12.C.CS3	The role of troubleshooting, research and development, invention and innovation and experimentation in problem solving.