Unit 2 Polynomial and Rational Functions

Content Area:	Math
Course(s):	Accelerated PreCalculus, CP PreCalculus
Time Period:	Marking Period 1
Length:	4
Status:	Published

Unit Overview

This unit covers how to analyze and graph polynomial functions, rational functions, and nonlinear inequalities.

Enduring Understandings

• Students will understand and be able to work with polynomial and rational functions.

Essential Questions

How do you sketch and write equations of parabolas?

How do you sketch the graphs of polynomial functions? How do you divide a polynomial by another polynomial and interpret the result?

How do you perform operations with complex numbers?

How do you find all of the zeros of a polynomial function?

How do you sketch the graph of a rational function?

How do you write a rational expression as the sum of two or more simpler rational expressions?

How do you find solutions of polynomial and rational inequalities?

New Jersey Student Learning Standards (No CCS)

MA.N-RN.A.1	Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.
MA.N-RN.A.2	Rewrite expressions involving radicals and rational exponents using the properties of exponents.
MA.N-RN.B.3	Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

MA.F-IF.C.7c	Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
MA.F-IF.C.7d	Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.
MA.F-IF.C.8a	Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
MA.N-CN.C.9	Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.

Instructional Strategies & Learning Activities

- Provide access to online book
- Provide access to book pages and problems through Canvas
- Provide access to review keys
- Provide access to webassign as learning and reviewing tool
- Specific problems will be pulled out to to provide opportunities to extend their knowledge.
- Work on problem solving in a group setting

Formative Assessments

- Daily homework checks
- Quiz
- Chapter Test
- Exit Tickets
- Warm-ups

Summative Assessment

- Unit Test
- Unit Project

Alternate Assessments

- Modified homework
- Modified quizzes
- Modified tests
- Modified projects

Closure

- Low-Stakes Quizzes Give a short quiz using technologies like Kahoot or a Google form.
- Have students write down three quiz questions (to ask at the beginning of the next class).
- Have students dramatize a real-life application of a skill.
- Ask a question. Give students ten seconds to confer with peers before you call on a random student to answer. Repeat.
- Have kids orally describe a concept, procedure, or skill in terms so simple that a child in first grade would get it.
- Direct kids to raise their hands if they can answer your questions. Classmates agree (thumbs up) or disagree (thumbs down) with the response.
- Have kids create a cheat sheet of information that would be useful for a quiz on the day's topic.
- Kids write notes to peers describing what they learned from them during class discussions.
- Have students fill out a checklist with the objectives for the day.
- Have students complete an exit ticket without putting their name on it. Hand back exit tickets the next day in class and have students correct as a warm up.
- Ask students to write what they learned, and any lingering questions on an "exit ticket". Before they leave class, have them put their exit tickets in a folder or bin labeled either "Got It," "More Practice, Please," or "I Need Some Help!"
- After writing down the learning outcome, ask students to take a card, circle one of the following options, and return the card to you before they leave: "Stop (I'm totally confused. Go (I'm ready to move on.)" or "Proceed with caution (I could use some clarification on . . .)"