Polynomials and Polynomial Functions

Content Area: Math

Course(s): Accelerated Algebra II, CP Algebra II

Time Period: Marking Period 2

Length: 6

Status: Published

Unit Overview

This unit allows students to master graphing polynomials and identifying important parts of the graph.

Enduring Understandings

Interpret functions that arise in applications in terms of the context.

Analyze functions using different representations.

Build new functions from existing functions.

Build a function that models a relationship between two quantities.

Interpret the structure of expressions.

Create equations that describe numbers or relationships.

Use complex numbers in polynomial identities and equations.

Understand the relationship between zeros and factors of polynomials.

Use polynomial identities to solve problems

Essential Questions

What does the degree of a polynomial tell you about its related polynomial function?

For a polynomial function, how are factors, zeros, and x-intercepts related?

For a polynomial equation, how are factors and roots related?

New Jersey Student Learning Standards (No CCS)

MA.A-SSE.A.2	Use the structure of an expression to identify ways to rewrite it. For example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$.
MA.F-IF.B.4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.
MA.F-IF.B.5	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
MA.F-IF.B.6	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
MA.F-IF.C.7	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
MA.F-IF.C.7c	Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
MA.A-APR.A.1	Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
MA.F-IF.C.8	Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
MA.A-APR.B.2	Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a , the remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.
MA.A-APR.B.3	Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
MA.F-IF.C.9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
MA.A-APR.D.6	Rewrite simple rational expressions in different forms; write $a(x)/b(x)$ in the form $q(x) + r(x)/b(x)$, where $a(x)$, $b(x)$, $q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.
MA.F-BF.B.3	Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $kf(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.
MA.A-REI.D.11	Explain why the x -coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

Interdisciplinary Connections

LA.W.9-10.6	Use technology, including the Internet, to produce, share, and update individual or shared writing products, taking advantage of technology's capacity to link to other information and to display information flexibly and dynamically.
SCI.HS-ETS1-2	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
TECH.8.1.12.C.CS4	Contribute to project teams to produce original works or solve problems.

Technology Standards

TECH.8.1.12.C.CS4	Contribute to project teams to produce original works or solve problems.
TECH.8.1.12.D.CS3	Exhibit leadership for digital citizenship.
TECH.8.1.12.E.CS4	Process data and report results.
TECH.8.1.12.F.CS3	Collect and analyze data to identify solutions and/or make informed decisions.
TECH.8.1.12.F.CS4	Use multiple processes and diverse perspectives to explore alternative solutions.
TECH.8.2.12.C.CS2	The application of engineering design.

21st Century Themes/Careers

CAEP.9.2.12.C.3 Identify transferable career skills and design alternate career plans.

Financial Literacy Integration

PFL.9.1.12.C.1 Compare and contrast the financial benefits of different products and services offered by a

variety of financial institutions.

Instructional Strategies & Learning Activities

- Use graphing calculator to explore tables.
- Spend time with modeling activities.
- Spend at least one day dedicated to modeling problems
- Use problems and activities from book involving modeling problems
- Provide access to online book
- Provide access to book pages and problems through Canvas and Twitter
- Provide access to review keys
- Assign ExamView Questions to provide practice and assessment.
- Use Delta Math for practice and assessments.

Formative Assessments

- Daily homework checks
- ExamView Questions
- Delta Math assignments
- Chapter Unit Test
- Exit Tickets
- Warm-ups

• Quizzes

Summative Assessment

- Unit Test
- Graphing Matching Activity (Optional)

Benchmark Assessments

• Midterm