Algebra II ACC Course Overview

Content Area: Course(s): Time Period: Length: Status:

Math
ALGEBRA II
Full Year Published

Cover

EAST BRUNSWICK PUBLIC SCHOOLS
East Brunswick New Jersey
Superintendent of Schools
Dr. Victor P. Valeski
Mathematics
Agebra II Honors-Course Number: 1162
BOARD OF EDUCATION
Todd Simmens, President
Vicki Becker, Vice President
Susanna Chiu
Robert Cancro
Liwu Hong
Laurie Lachs
Barbara Reiss
Chad Seyler
Meredith Shaw
K-12 Supervisor of Mathematics
Mr. Anthony J. Gugliotta Jr.
Mathematics Department Chairperson (Grade 8-12)
Dr. Manjit K. Sran

Revisions Prepared By
Dr. Manjit K. Sran

Course Adoption: 4/21/1986

Curriculum Adoption:

Date of Last Revision Adoption: 9/5/19

Course Overview

COURSE DESCRIPTION:

Algebra is a symbolic language used to express mathematical relationships. Students need to understand how quantities are related to one another, and how algebra can be used to concisely express and analyze those relationships. Modern technology provides tools for supplementing the traditional focus on algebraic procedures, such as solving equations, with a more visual perspective, with graphs of equations displayed on a screen. Students can then focus on understanding the relationship between the equation and the graph, and on what the graph represents in a real-life situation. This course includes the study of patterns involving whole numbers, rational numbers, and integers using tables, rules, graphs and expressions. Appropriate algebraic methods used to solve linear and quadratic equations and linear inequalities will be studied. The focus of the course will center around the ability to graph functions and understand and describe the general behavior of functions. This is one of three courses in which students are enabled and expected to demonstrate mastery of some of the algebraic standards for mathematical content, the other course being Algerbra II and Algebra II Honors. The Standards for Mathematical Practices are embedded within the instructional strategies, and not delineated specifically by unit.

Modifications

Newsela.com is available for differentiated reading assignments
The district has a license for Learning Ally. Learning Ally is an audio book resource for students who are unable to "eye read" grade level text but are able to comprehend when "ear reading" or listening.

Textbook: Big Ideas Algebra 2 A Common Core Curriculum
Ron Larson and Laurie Boswell 2019

冈

- Teacher's Resource Package and online resources accompanying text
- TI-84 graphing calculators

MA.F-BF.A.1b	Combine standard function types using arithmetic operations.
MA.F-BF.B. 3	Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.
MA.F-BF.B.4a	Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse.
MA.F-IF.B. 4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.
MA.F-IF.C. 9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
MA.F-IF.C.7b	Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
MA.F-IF.C.7c	Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
MA.F-IF.C.7e	Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
MA.F-IF.C.8a	Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
MA.F-IF.C.8b	Use the properties of exponents to interpret expressions for exponential functions.
MA.F-LE.A. 4	Understand the inverse relationship between exponents and logarithms. For exponential models, express as a logarithm the solution to $a b$ to the $c t$ power $=d$ where a, c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology.
MA.F-TF.A. 1	Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
MA.F-TF.C. 8	Prove the Pythagorean identity $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$ and use it to find $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ given $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ and the quadrant of the angle.
MA.N-CN.C. 7	Solve quadratic equations with real coefficients that have complex solutions.
MA.N-CN.C. 9	Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.
MA.N-RN.A. 1	Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.
MA.N-RN.A. 2	Rewrite expressions involving radicals and rational exponents using the properties of exponents.
MA.S-IC.A. 1	Understand statistics as a process for making inferences about population parameters based on a random sample from that population.
MA.S-IC.A. 2	Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation.
MA.S-IC.B	Make inferences and justify conclusions from sample surveys, experiments, and observational studies
MA.S-IC.B. 3	Recognize the purposes of and differences among sample surveys, experiments, and

observational studies; explain how randomization relates to each.

MA.S-IC.B. 4	Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.
MA.S-IC.B. 5	Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.
MA.S-IC.B. 6	Evaluate reports based on data.
MA.S-ID.A. 1	Represent data with plots on the real number line (dot plots, histograms, and box plots).
MA.S-ID.A. 2	Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.
MA.S-ID.A. 3	Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).
MA.S-ID.A. 4	Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.
MA.A-APR.B. 2	Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.
MA.A-APR.B. 3	Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
MA.A-APR.C. 5	Know and apply the Binomial Theorem for the expansion of $(x+y)^{\mathrm{n}}$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle.
MA.A-APR.D. 7	Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.
MA.A-CED.A. 1	Create equations and inequalities in one variable and use them to solve problems.
MA.A-CED.A. 2	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
MA.A-CED.A. 3	Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.
MA.A-CED.A. 4	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.
MA.A-REI.A. 2	Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
MA.A-SSE.A. 1	Interpret expressions that represent a quantity in terms of its context.
MA.A-SSE.A. 2	Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as ($x^{2}-$ $\left.y^{2}\right)\left(x^{2}+y^{2}\right)$.
MA.A-SSE.A.1a	Interpret parts of an expression, such as terms, factors, and coefficients.
MA.A-SSE.A.1b	Interpret complicated expressions by viewing one or more of their parts as a single entity.
MA.A-SSE.B. 4	Derive and/or explain the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems.

Standards for Mathematical Practices

MA.K-12.1
MA.K-12.2
MA.K-12.3
MA.K-12.4
MA.K-12.5
MA.K-12.6
MA.K-12.7
MA.K-12.8

Make sense of problems and persevere in solving them.
Reason abstractly and quantitatively.
Construct viable arguments and critique the reasoning of others.
Model with mathematics.
Use appropriate tools strategically.
Attend to precision.
Look for and make use of structure.
Look for and express regularity in repeated reasoning.

Interdisciplinary Standards

ce ard	Explanation
1-2	Design a solution to a complex real-world problem by breaking it down into smaller, more manageabl be solved through engineering.
L-2	Develop and use a model based on evidence to illustrate the relationships between systems or betwe system.
l-4	Use a model based on evidence to illustrate the relationships between systems or between componeı
ard	Explanation
10.8	Determine if the reasoning and evidence in a text support the author's claim or a recommendation for or technical problem.
. 12.1	Accurately cite strong and thorough evidence from the text to support analysis of science and technice precise details for explanations or descriptions
. 12.7	Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., c video, multimedia) in order to address a question or solve a problem.
12.8	Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the da and corroborating or challenging conclusions with other sources of information.
. 12.9	Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent process, phenomenon, or concept, resolving conflicting information when possible.
-12.1	Write arguments focused on discipline-specific content
-12.2	Write informative/explanatory texts, including the narration of historical events, scientific procedures, technical processes.
-12.5	Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new app addressing what is most significant for a specific purpose and audience.
-12.7	Conduct short as well as more sustained research projects to answer a question (including a self-gener solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the demonstrating understanding of the subject under investigation.

$\mathbf{- 1 2 . 9}$	Draw evidence from informational texts to support analysis, reflection, and research.
$\mathbf{2 . 4}$	Present information, findings and supporting evidence clearly, concisely, and logically. The content, o। development, and style are appropriate to task, purpose, and audience.
$\mathbf{2 . 5}$	Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in । enhance understanding of findings, reasoning, and evidence and to add interest

NJSLS-Career Readiness, Life Literacies, and Key Skills

20 New Jersey Student Learning Standards - Career Readiness, Life I Key Skills 9.4 Life Literacies and Key Skills by the End of Grade 12

Creativity and Innovation

Core Ideas	Performance Expectations
et, failure is an important part of	$\bullet 9.4 .12$ CI.1: Demonstrate the ability to reflect, analyze, and use cre

y to reflect, analyze, and use cre (e.g., 1.1.12prof.CR3a).

Critical Thinking and Problem-solving		
Core Ideas	Performance Expectations	

lividuals with diverse experiences can ving process, particularly for global olutions are needed.

- 9.4.12.CT.1: Identify problem-solving strategies used in the develo innovative product or practice (e.g., 1.1.12acc.C1b, 2.2.12.PF.3).
- 9.4.12.CT.2: Explain the potential benefits of collaborating to enha and problem solving (e.g., 1.3E.12profCR3.a).
- 9.4.12.CT.3: Enlist input from a variety of stakeholders (e.g., comn experts in the field) to design a service learning activity that addres issue (e.g., environmental justice).
- 9.4.12.CT.4: Participate in online strategy and planning sessions fo school-based, or other project and determine the strategies that con outcomes.

Global and Cultural Awareness

Core Ideas

ems faced by a global society require lividuals with different points of view

Performance Expectations

- 9.4.12.GCA.1: Collaborate with individuals to analyze a variety of climate change effects and determine why some solutions (e.g., pol cultural) may work better than others (e.g., SL.11-12.1., HS-ETS1-ETS1-4, 6.3.12.GeoGI.1, 7.1.IH.IPERS.6, 7.1.IL.IPERS.7, 8.2.12.F

Technology Literacy	
Core Ideas	Performance Expectations
features, capacities, and styles. it digital tools is helpful in selecting n task.	- 9.4.12.TL.1: Assess digital tools based on features such as accessib capacities, and utility for accomplishing a specified task (e.g., W. 1 - 9.4.12.TL.2: Generate data using formula-based calculations in a sp conclusions about the data.
ools can be used to access, record and ints and to collect and tabulate the sple.	- 9.4.12.TL.3: Analyze the effectiveness of the process and quality o environments. - 9.4.12.TL.4: Collaborate in online learning communities or social r worlds to analyze and propose a resolution to a real-world problem 7.1.AL.IPERS.6).

Pacing Guide

LEARNING GOALS

Learning Goal 1:

Solve algebraically and graphically a system of two linear equations.

Solve algebraically a system of three linear equations.

Learning Goal 1:

Transform quadratic functions expressed symbolically, and identify key features of the graph.

Learning Goal 2:

Graph quadratic functions expressed symbolically, and show key features of the graph (including intercepts ε extrema).

Learning Goal 3:

Write equations of quadratic functions.

Learning Goal 1:

Solve quadratic equations with real coefficients that have complex solutions by taking square roots, completi square, and factoring.

Learning Goal 2:

Add, subtract, multiply, and divide complex numbers using the commutative, associative, and distributive prr

Learning Goal 3:

Solve simple systems consisting of a linear and quadratic equation in two variables algebraically and graphic

Learning Goal 4:

Solve quadratic inequalities.
Learning Goal 1:
Graph absolute value, greatest integer, cubic, piece-wise, and sine and cosine functions.

Learning Goal 2:

ilies Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$, including absolute value, integer, cubic, piece-wise, and sine and cosine functions.

Learning Goal 3:

Graph trigonometric functions (sine and cosine specifically) expressed symbolically, showing key features o by hand in simple cases and using technology for more complicated.

Learning Goal 1:

Use an appropriate factoring technique to factor polynomials. Explain the relationship between zeros and fac polynomials, and use the zeros to construct a rough graph of the function defined by the polynomial.

Learning Goal 2:

Apply the Remainder Theorem in order to determine the factors of a polynomial.

Learning Goal 3:

Graph polynomial functions from equations; identify zeros when suitable factorizations are available; show k and end behavior.
Learning Goal 1:
cal Use properties of integer exponents to explain and convert between expressions involving radicals and ration
exponents.

Learning Goal 2:

For radical functions, interpret key features of graphs and tables in terms of the quantities, and sketch graphs key features given a verbal description of the relationship.

Learning Goal 3:

Solve radical equations and inequalities in one variable, use them to solve problems and show how extraneor may arise.

Learning Goal 4:

Perform operations on functions, including addition, subtraction, multiplication, division, and composition; is domain of the resulting function.

Learning Goal 5:

Determine the inverse function for a function.

Learning Goal 1:

Graph exponential functions expressed symbolically and show key features of the graph (including intercepts behavior).

Learning Goal 2:

Use the properties of exponents to transform expressions for exponential functions, explain properties of the revealed in the transformed expression or different properties of the function.

Learning Goal 3:

Express as a logarithm the solution to $a b^{c t}=d$ where a, c, and d are numbers and the base b is a real number; the logarithm using properties of logarithms and technology.

Learning Goal 4:

Graph logarithmic functions expressed symbolically and show key features of the graph (including intercepts behavior).

Learning Goal 5:

Use properties of logarithms.

Learning Goal 6:

Solve exponential and logarithmic equations and inequalities using properties of exponents and logarithms.

Learning Goal 1:

Classify and write direct and inverse variation equations.

Learning Goal 2:

For rational functions, interpret key features of graphs, including intercepts and asymptotes, and sketch grapl key features given a verbal description of the relationship.

Learning Goal 3:

Perform operations on rational expressions, including addition, subtraction, multiplication, and division.

Learning Goal 4:

Solve rational equations and inequalities in one variable, use them to solve problems and show how extraneo may arise. create simple rational equations and inequalities in one variable and use them to solve problems.

Learning Goal 1:

Define and use sequences and series.

Learning Goal 2:

Analyze arithmetic sequences and series.

Learning Goal 3:

Analyze geometric sequences and series.
Learning Goal 1:

Identify sample spaces and find theoretical and experimental probabilities.

Learning Goal 2:
Analyze independent and dependent events.

Learning Goal 3:

Use two-way tables to calculate probabilities.

Learning Goal 4:

Use the mean and standard deviation of a data set to fit it to a normal distribution, estimate population percen calculators, spreadsheets, and tables to estimate areas under the normal curve).

Learning Goal 5:

Explore populations, samples, collecting data, and analyzing hypotheses.

Learning Goal 1:

Derive the equation of a parabola given a focus and directrix; graph a parabola, identifying the vertex, focus, directrix.

Learning Goal 2:

Derive the equation of a circle given features of the graph; graph a circle, identifying the radius and center.

Learning Goal 3:

Derive the equation of an ellipse given features of the graph; graph an ellipse, identifying the vertices, co-ver and center.

Learning Goal 4:

Derive the equation of a hyperbola given features of the graph; graph a hyperbola, identifying vertices, co-ve and center.

Common Unit Test and Quizzes	Minor Assessments \& Classwork	Projects	Homework	Midterm Exam	Fin
Student assessments based on specific or general content knowledge	Any cooperative work primarily completed in class, Entrance / Exit cards, Performance assessments etc.	Some of the courses may utilize content specific projects.	Work assigned to be completed outside of classroom	Common Comprehensive Assessment given after semester 1 .	Cor Ass con con

Grading Procedures and Evaluation

GRADING GUIDELINES:

As per Math Department Policy, grades will be determined by a variety of assessment strategies, including Major Assessments, Minor Assessments, and Performance Assessments. In addition to tests and quizzes, students will be evaluated on a combination of performance assessment instruments, including homework completions, cooperative group participation, note-taking, open ended question responses, lab reports and/or supplemental projects.

GRADING PROCEDURES:

Grading procedures must be described in sufficient detail so that a pupil will understand, the minimal to advanced proficiency, expected of him/her as the outcome of each unit, for the marking period and for the course as a whole. Benchmark level assessments associated with the course also need to be identified. While assessments of proficiency levels must be valid and reliable they do not need be the same for all students. Other criteria to be considered in grading must be identified and the degree to which such criteria will be considered in a grade. Each pupil must receive a copy of the grading procedures, proficiencies and criteria for each unit and/or marking period.

COURSE EVALUATION:

Course achievement will be evaluated as the percent of all pupils who achieve the minimum level of proficiency (final average grade) in the course. Student achievement levels above minimum proficiency will
also be reported. Final grades, and where relevant mid-term and final exams, will be analyzed by staff for the total cohort and for sub-groups of students to determine course areas requiring greater support or modification.

In terms of proficiency the East Brunswick grades are as follows:

A	Excellent	Advanced Proficient
B	Good	Above Average Proficient
C	Fair	Proficient
D	Poor	Minimally Proficient
F	Failing	Partially Proficient

In this course the goal is that a minimum of 95% of the pupil's will meet at least the minimum proficiency level (D or better) set for the course. The department will analyze the achievement of students on Unit Assessments, Mid-term and Final Exams and Final Course Grades, and for Final Course Grades the achievement of sub-groups identified by the state to determine if modifications in the curriculum and instructional methods are needed.

Course evaluation requires the answering of the following questions:

1. Are course content, instruction and assessments aligned with the required NJSLS?
2. Is instruction sufficient for students to achieve the Standards?
3. Do all students achieve the set proficiencies/benchmarks set for the course?

Other Information

SCED

02056 Algebra II Accelerated

Algebra II course topics typically include field properties and theorems; set theory; operations with rational
and irrational expressions; factoring of rational expressions; in-depth study of linear equations and inequalities; quadratic equations; solving systems of linear and quadratic equations; graphing of constant, linear, and quadratic equations; properties of higher degree equations; and operations with rational and irrational exponents.

