Introduction to Computer Science Overview Content Area: Course(s): M **Computer Science & Business** Math, INTRODUCTION TO COMPUTER SCIENCE Time Period: Length: Status: 90 Days Published Cover # EAST BRUNSWICK PUBLIC SCHOOLS **East Brunswick New Jersey** # **Superintendent of Schools** Dr. Victor P. Valeski ### **BOARD OF EDUCATION** Todd Simmens, President Vicki Becker, Vice President Susanna Chiu Robert Cancro Liwu Hong Laurie Lachs Barbara Reiss Chad Seyler Meredith Shaw Course Adoption: 4/21/1986 Curriculum Adoption: 4/21/1986 Date of Last Revision Adoption: 9/1/2017 ### **COURSE DESCRIPTION** The Introduction to Computer Science course is a one semester introductory computer science class. Students taking the course are required to have taken a prerequisite math course of at least Algebra I. The course focuses on using a programming language to solve problems. Students will be introduced to an object oriented programming language. They will design and develop programs to be run and tested on the computer. The course introduces students to interactive input and output methods, file input and output, control structures for selection and iteration, assignment statements, math operators. Students are also introduced to Java data types including basic primitive types (int, long, double, char, boolean) as well as standard classes (String, and Math etc.). Students are required to take tests and write between 50-75 independent programming assignments in the semester. # COURSE SCOPE AND SEQUENCE • Document a program using comments | Sequential Unit Description | Associated CPI's to be
Achieved | Marking
Period
Guide | Other
Pacing
Guide
References | Proficiency (Summative)
Assessments | | |---|------------------------------------|----------------------------|---|--|--| | Unit 1: Introduction to Computers and Programming | | | | | | | • Describe the hardware and software components of a typical computer system | | | | Formative | | | • Understand the history of | 8.2.2.E.1 | | | Class discussion | | | computing and computers | 8.2.2.E.2 | | | • Class discussion | | | Understand the terminology of Computer Science | 8.2.2.E.3 | | | Summative: | | | Use an IDE with an editor
and a compiler to create
programs to execute on a | 8.2.2.E.4 | | | | | | | 8.2.5.E.1 | 1 7 days | Vocabulary
exercise | | | | computer | 8.2.5.E.2 | | | • Unit 1 | | | Describe the steps in the program development | 8.2.5.E.3 | | | Programming assignments (1-3) | | | process | 8.2.12.E.2 | | | • Unit test | | | Create simple programs
with input and output | 8.2.12.E.3 | | | | | | • Use variables to store data | | | | | | Unit 2: Writing programs using String objects and String class methods | methods | | | | | | |---|------------|------------|---|---------|----------------------------------| | Define string and
understand its
implementation in Java as A
String class | | | | | Formative: Sample class programs | | • Input and output Strings | 8.2.12.E.1 | | | | | | Use simple String class methods to precess String | 8.2.12.E.2 | | 1 | 7 days | Summative: | | methods to process String data | 8.2.12.E.3 | | 1 | / days | Collected Exercises | | • Use a dowhile loop to | 8.2.12.E.4 | | | | Unit 2 programs (1-3) | | repeat program statements | | | | | Unit tests | | Use String, char and int
variable to store data related
to strings | | | | | | | Debug simple errors in programs | | | | | | | Unit 3: Writing programs using primitive numeric data | | | | | | | • Understand the difference between numeric data (int | | | | | Formative: | | and double) and String objects | | | | | Sample class programs | | • | | | | | Exercises | | Perform mathematical calculations with numeric | | 8.2.12.E.1 | | | | | data using mathematical operators following the | | 8.2.12.E.2 | 1 | 17 days | Summative: | | order of operations | | 8.2.12.E.3 | | | Collected Exercises | | Declare valid meaningful variables to reference data | | 8.2.12.E.4 | | | Unit 3 programs(1-5) | | in a program | | | | | Unit Tests | | Understand how to
write/identify valid numeric
data values | | | | | | - Input and output numeric data - Format numeric data for output - Use methods of the Math class to perform numeric calculations Unit 4: Using conditional control structures to make decisions in a program | | Introduce the if/else selection structures to make decisions | A-APR 1 | | | | Formative: | |---|--|----------|------------|------|---------|-----------------------| | • | Write boolean expressions | A-REI.1 | N-Q 2 | | | | | | for conditions using reference operators and | A-SSE 1a | N-Q 3 | | | Sample class programs | | | Boolean operators | A-SSE 1b | | | | Exercises | | • | Introduce nested ifs to | | 0.2.12.5.1 | 1 /2 | 10.1 | Summative: | | | create multilevel selection | A-SSE 2 | 8.2.12.E.1 | 1/2 | 18 days | Collected Exercises | | | structures | F-BF 1a | 8.2.12.E.2 | | | Unit 1 programs(1.7) | | | Use String class methods to | F-BF 2 | 8.2.12.E.3 | | | Unit 4 programs(1-7) | | • | Understand how Strings | F-LE b | 8.2.12.E.4 | | | Unit Tests | | | objects are compared using
the ascii code of their char
data | N-Q 1 | | | | | | | | | | Formative: | |--|---------|--------------|----|-----------------------| | Unit 5: Using loop control structure to repeat statements | A-SSE 1 | N-Q3 | | Sample class programs | | | A-SSE 2 | 8.2.12.E.1 | | Exercises | | Introduce the while loop
and the for to repeat | A-SSE 4 | 8.2.12.E.2 2 | 16 | | | program statements | F-BF 1a | 8.2.12.E.3 | | Summative: | | • Use a "counter" to control a | F-BF 3 | 8.2.12.E.4 | | Collected Exercises | | loop | F-LE 1a | | | | Unit 5 programs (1-9) | |--|----------|------------|---|---------|--------------------------------| | Use loops to generate data
to create a "chart" | F-LE 3 | | | | Unit Tests | | | N-Q 1 | | | | | | Discuss runtime errors
associated with incorrectly
constructed loops | N-Q 2 | | | | | | Use a loop to "traverse" a
string character by character | | | | | | | Process individual char data in a string | | | | | | | • Use a loop to "factor" an int | | | | | | | • Create and use "nested" loop structures | | | | | | | | | | | | Formative: | | Unit 6: Using randomness in programs | | | | | Sample class programs | | • Discuss the concept of randomness in a program | A-REI 1 | 8.2.12.E.1 | | | Exercises | | • Introduce the Random class | A-REI 3 | 8.2.12.E.2 | | | | | to generate "pseudorandom" values in a program | , | 8.2.12.E.3 | 2 | 11 days | Summative: Collected Exercises | | • Create a "formula" to | | 8.2.12.E.4 | | | | | generate random int values | | | | | Unit 6 programs (1-9) | | in a specified range | | | | | Unit Tests | | Unit 7: Methods | N-Q 1 | | | | Formative: | | • Discuss the concept of | N-Q 2 | | | | | | reusing code | N-Q 3 | 8.2.12.E.1 | | | Sample class programs | | • Introduce use of an API | | 8.2.12.E.2 | | | | | • Create methods for repeated | A-APR 1 | 8.2.12.E.3 | 2 | 7 days | Summative: | | use | A-SSE 1a | | | | Unit 7 programs (1-6) | | Use methods to break down
a difficult math idea | | 8.2.12.E.4 | | | Unit Tests | | • Create appropriate | F-IF 1 | | | | | # Unit 7: Civics • Discuss backing up computers | • Introduce the need for security | 8.1.8.D.1 | 8.2.12.E.1 | | Formative: | |-------------------------------------|------------|------------|----------------|-------------------| | • Create password policies | 8.1.12.D.2 | 8.2.12.E.2 | | Class discussions | | • Discuss how to prevent | 8.1.12.D.3 | 8.2.12.E.3 | Ongoing 7 days | | | online attacks | 8.1.12.D.4 | 8.2.12.E.4 | | Summative: | | • Discuss file sharing legal issues | 8.1.12.D.5 | | | | • Describe methods for continuing education # CONTENT FOCUS AREA AND COURSE NAME **Course Name: Introduction to Computer Science - #1452** | Course
Number | School
Numbers | | Grads(s) | Credits | Min. Per
Week | Elective/Requ | Initial aired Course Adopted | |------------------|-------------------|-------|----------|---------|------------------|---------------|------------------------------| | 1452 | 050 | 10-12 | 10-12 | 2.50 | 210 | Е | 04/21/86 | # **Textbooks and Other Resources** Java an Introduction to Computer Science and Programming(Walter Savitch) Second Edition Prentice Hall Teacher prepared samples and exercises # **Standards** | MA.A-SSE.A | Interpret the structure of expressions | |------------------|--| | MA.A-SSE.A.2 | Use the structure of an expression to identify ways to rewrite it. For example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$. | | MA.A-APR.A | Perform arithmetic operations on polynomials | | MA.A-APR.C | Use polynomial identities to solve problems | | MA.A-APR.D | Rewrite rational expressions | | MA.A-CED | Creating Equations | | TECH.8.1.8.D.1 | Understand and model appropriate online behaviors related to cyber safety, cyber bullying, cyber security, and cyber ethics including appropriate use of social media. | | TECH.8.1.8.E.1 | Effectively use a variety of search tools and filters in professional public databases to find information to solve a real world problem. | | TECH.8.1.8.E.CS1 | Plan strategies to guide inquiry. | | TECH.8.1.8.E.CS2 | Locate, organize, analyze, evaluate, synthesize, and ethically use information from a variety of sources and media. | | TECH.8.1.12.D.2 | Evaluate consequences of unauthorized electronic access (e.g., hacking) and disclosure, and on dissemination of personal information. | | TECH.8.1.12.D.3 | Compare and contrast policies on filtering and censorship both locally and globally. | | TECH.8.1.12.D.4 | Research and understand the positive and negative impact of one's digital footprint. | | TECH.8.1.12.D.5 | Analyze the capabilities and limitations of current and emerging technology resources and assess their potential to address personal, social, lifelong learning, and career needs. | | TECH.8.2.2.E.1 | List and demonstrate the steps to an everyday task. | | TECH.8.2.2.E.2 | Demonstrate an understanding of how a computer takes input through a series of written commands and then interprets and displays information as output. | | TECH.8.2.5.E.1 | Identify how computer programming impacts our everyday lives. | | TECH.8.2.5.E.2 | Demonstrate an understanding of how a computer takes input of data, processes and stores the data through a series of commands, and outputs information. | | TECH.8.2.5.E.3 | Using a simple, visual programming language, create a program using loops, events and procedures to generate specific output. | | TECH.8.2.12.E.1 | Demonstrate an understanding of the problem-solving capacity of computers in our world. | | TECH.8.2.12.E.2 | Analyze the relationships between internal and external computer components. | | TECH.8.2.12.E.3 | Use a programming language to solve problems or accomplish a task (e.g., robotic functions, website designs, applications, and games). | | TECH.8.2.12.E.4 | Use appropriate terms in conversation (e.g., troubleshooting, peripherals, diagnostic software, GUI, abstraction, variables, data types and conditional statements). | | | | # **GRADING PROCEDURES** In terms of proficiency level the East Brunswick grades equate to: A Excellent Advanced Proficient B Good Above Average Proficient C Fair Proficient D Poor Minimally proficient F Failing Partially Proficient ## **COURSE EVALUATION** Each quarter students will be evaluated with tests and programming assignments using a total point basis to determine the quarter average. The semester/course average will be a weighted average of the 2 quarter averages (40% each) and a final exam (20%) Course achievement will be evaluated based on the percent of all pupils who achieve the minimum level of proficiency (final average grade) in the course. Student achievement levels above minimum proficiency will also be reported. Final grades, and where relevant mid-term and final exams, will be analyzed by staff for the total cohort and for sub-groups of students to determine course areas requiring greater support or modification.) # **Other Details** # 10152 Computer Programming Computer Programming courses provide students with the knowledge and skills necessary to construct computer programs in one or more languages. Computer coding and program structure are often introduced with the BASIC language, but other computer languages, such as Visual Basic (VB), Java, Pascal, C++, and COBOL, may be used instead. Initially, students learn to structure, create, document, and debug computer programs, and as they progress, more emphasis is placed on design, style, clarity, and efficiency. Students may apply the skills they learn to relevant applications such as modeling, data management, graphics, and text-processing.