Calculus Honors Course Overview

Content Area:	Math
Course(s):	CALCULUS H
Time Period:	
Length:	Full Year
Status:	Published

Cover

EAST BRUNSWICK PUBLIC SCHOOLS

East Brunswick New Jersey

Superintendent of Schools

Dr. Victor P. Valeski

Mathematics

Calculus Honors-Course Number: 1168

BOARD OF EDUCATION

Todd Simmens, President

Vicki Becker, Vice President

Susanna Chiu

Robert Cancro

Liwu Hong

Laurie Lachs

Barbara Reiss

Chad Seyler

Meredith Shaw

K-12 Supervisor of Mathematics

Mr. Anthony J. Gugliotta Jr.

Mathematics Department Chairperson (Grade 8-12)

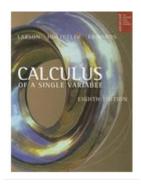
Dr. Manjit K. Sran

Revisions Prepared By

Dr. Manjit K. Sran

Course Adoption: 12/11/2003

Curriculum Adoption: 11/2/2017


Date of Last Revision Adoption: 9/1/2017

Course Overview

This course covers a full year study of the Calculus of algebraic, trigonometric, exponential and logarithmic functions. Topics include the study of limits, differentiation and its applications, basic forms of integration and applications of the definite integral. This course is offered in conjunction with Middlesex County College and is part of the Senior Math Experience. Modern technology provides tools for supplementing the traditional focus on procedures and proof so that students can then focus on understanding the relationship and behavior of the functions. Students further explore functions in real-life situations, including science, economics, and biology.

Textbooks and other resources

Textbook: Calculus of a Single Variable; Larson, Hoestetler, Edwards; Houghton Mifflin; copyright 2006; adopted 4/21/2007

TI-83 or TI-84 graphing calculator is required for this course

Scope and Sequence

Sequential Unit Description:	Marking Period Guide	Other Pacing Guide References	Proficiency (Summative) Assessments
Unit 1 – Preparation for Calculus			
Students will use the features of the graphing calculator to identify points of intersection and zeros as well as sketch and anaylze graphs of functions.	1	Chapter P: Sections 1- 3	Quiz Test
They will also write linear equations, identify domain and range, use function notation, use the zero-product property to solve quadratic equations, solve trigonometric equations, and apply properties of logs and exponential functions.		9 days	
Unit 2 – Limits			
Students will develop an understanding of limits by estimating them from graphs and tables of data. They will find limits using algebraic techniques and applying the special trigonemtric limits.	1	Chapter 1: Sections 2- 5 Chapter 3:	Quiz
Students will determine continuity of a function, types of discontinuities, one-sided limits, and infinite limits (vertical asymptote and limits at infinity (horizontal asymptotes). They will also understand and use the Intermediate Value Theorem.		Section 5 18 days	Test
Unit 3 - Differentiation		Chapter 2: Sections 1-5	
Students will find the slope of a secant and use the limit definition of th derivative in order to determine the slope of the line tangent to the curve.		Chapter 5: Sections 1 and 4	Quiz Test

		46 days	
Students will learn differentiation rules, including Power Rule, Product Rule, Quotient Rule, and Chain Rule. They will also find the derivative of trigonometric, natural log, and exponential functions.		40 uays	
Students will apply differentiation rules, high-order, and implicit differentiation to solve problems that involve writing equations of tangent and normal lines, finding the velocity and acceleration of an object (e.g. vertical motion models), and related rates.			
Unit 4 – Applications of Differentiation			
Students will understand and use Rolle's Theorem and Mean Value Theorem.			
Students will use the first derivative to determine critical numbers and find absolute extrema of a function on a closed interval.		Chapter 3: Sections	
Student will then use the first and second derivatives to analyze the behavior of a function, where it increases and decreases as well as determine concavity. This information will be used to identity relative extrema and points of inflection.	2 & 3	1-4 and 6-7 36 days	Quiz Test
Students will solve optimization problems in economics and other real- world situations. Given a function, students will sketch its first and second derivative graphs. They will also construct the graph of a function given information about the first and second derivative.			
Unit 5 – Integration		Chapter 4: Sections 1-4	
Students will find the anti-derivative of basic functions, including trigonometric, natural log, and exponential functions. They will find the general solution of a diffential equation as well as use intial conditions to find the particular solution. Calculus will be used to analyze vertical motion problems in which acceleration is determined by a gravitional force.	3	Chapter 5: Sections 2 and 4	Quiz Test
Students will use Riemann Sums to approximate the area under a		26 days	

curve. The Fundamental Theorem of Calculus will be applied to evaluate definite integrals.			
Additionally, students will apply the u-substitution method for finding anti-derivatives of more complicated functions.			
Unit 6 – Applications of Integration		Chapter 7: Sections	Quiz
Students will find the area between two curves. Volumes of solids formed by rotation about an axis will be determined by the disc and washer methods.	4	1-2 19 days	Test

Standards for Mathematical Practices

MA.K-12.1	Make sense of problems and persevere in solving them.
MA.K-12.2	Reason abstractly and quantitatively.
MA.K-12.3	Construct viable arguments and critique the reasoning of others
MA.K-12.4	Model with mathematics.
MA.K-12.5	Use appropriate tools strategically.
MA.K-12.6	Attend to precision.
MA.K-12.7	Look for and make use of structure.
MA.K-12.8	Look for and express regularity in repeated reasoning.

Grading and Evaluation Guidelines

GRADING GUIDELINES:

As per Math Department Policy, grades will be determined by a variety of assessment strategies, including Major Assessments, Minor Assessments, and Performance Assessments. In addition to tests and quizzes, students will be evaluated on a combination of performance assessment instruments, including homework completions, cooperative group participation, note-taking, open ended question responses, lab reports and/or supplemental projects.

GRADING PROCEDURES:

Grading procedures must be described in sufficient detail so that a pupil will understand, the minimal to advanced proficiency, expected of him/her as the outcome of each unit, for the marking period and for the course as a whole. Benchmark level assessments associated with the course also need to be identified. While assessments of proficiency levels must be valid and reliable they do not need be the same for all students. Other criteria to be considered in grading must be identified and the degree to which such criteria will be considered in a grade. Each pupil must receive a copy of the grading procedures, proficiencies and criteria for each unit and/or marking period.

COURSE EVALUATION:

Course achievement will be evaluated as the percent of all pupils who achieve the minimum level of proficiency (final average grade) in the course. Student achievement levels above minimum proficiency will also be reported. Final grades, and where relevant mid-term and final exams, will be analyzed by staff for the total cohort and for sub-groups of students to determine course areas requiring greater support or modification.

Α	Excellent	Advanced Proficient
B	Good	Above Average Proficient
С	Fair	Proficient
D	Poor	Minimally Proficient
F	Failing	Partially Proficient

In terms of proficiency the East Brunswick grades are as follows:

In this course the goal is that a minimum of 95% of the pupil's will meet at least the minimum proficiency level (D or better) set for the course. The department will analyze the achievement of students on Unit Assessments, Mid-term and Final Exams and Final Course Grades, and for Final Course Grades the achievement of sub-groups identified by the state to determine if modifications in the curriculum and instructional methods are needed.

Course evaluation requires the answering of the following questions:

- 1. Are course content, instruction and assessments aligned with the required NJSLS?
- 2. Is instruction sufficient for students to achieve the Standards?
- 3. Do all students achieve the set proficiencies/benchmarks set for the course?

Other Details

Mathematics (AAAN)

Calculus Honors

Course No. 1044 (1168)

SCED

02151 General Applied Math

General Applied Math courses reinforce general math skills, extend these skills to include some pre-algebra and algebra topics, and use these skills in a variety of practical, consumer, business, and occupational applications. Course topics typically include rational numbers, measurement, basic statistics, ratio and proportion, basic geometry, formulas, and simple equations.